首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   16篇
  2021年   2篇
  2019年   5篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   8篇
  1998年   8篇
  1997年   2篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有150条查询结果,搜索用时 187 毫秒
101.
102.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   
103.
Clarke  JL; Watkins  WM 《Glycobiology》1999,9(2):191-202
Previous investigations on the monkey kidney COS cell line demonstrated the weak expression of fucosylated cell surface antigens and presence of endogenous fucosyltransferase activities in cell extracts. RT-PCR analyses have now revealed expression of five homologs of human fucosyltransferase genes, FUT1, FUT4, FUT5, FUT7, and FUT8, in COS cell mRNA. The enzyme in COS cell extracts acting on unsialylated Type 2 structures is closely similar in its properties to the alpha1,3- fucosyltransferase encoded by human FUT4 gene and does not resemble the product of the FUT5 gene. Although FUT1 is expressed in the COS cell mRNA, it has not been possible to demonstrate alpha1,2- fucosyltransferase activity in cell extracts but the presence of Le(y) and blood-group A antigenic determinants on the cell surface imply the formation of H-precursor structures at some stage. The most strongly expressed fucosyltransferase in the COS cells is the alpha1,6-enzyme transferring fucose to the innermost N -acetylglucosamine unit in N - glycan chains; this enzyme is similar in its properties to the product of the human FUT8 gene. The enzymes resembling the human FUT4 and FUT8 gene products both had pH optima of 7.0 and were resistant to 10 mM NEM. The incorporation of fucose into asialo-fetuin was optimal at 5.5 and was inhibited by 10 mM NEM. This result initially suggested the presence of a third fucosyltransferase expressed in the COS cells but we have now shown that triantennary N- glycans with terminal nonreducing galactose units, similar to those present in asialo-fetuin, are modified by a weak endogenous beta-galactosidase in the COS cell extracts and thereby rendered suitable substrates for the alpha1,6- fucosyltransferase.   相似文献   
104.
105.
106.
Relative competitive ability and growth characteristics of the narrow endemic Solidago shortii were compared to those of the geographically widespread S. altissima. Competition and growth studies were conducted over the entire growing season in an ambient-temperature greenhouse, using a 3:1 (v/v) native limestone soil/river sand mixture. Results from a de Wit replacement series experiment (relative yield, relative yield total, plant height, aggressivity values) with S. shortii, S. altissima, and Festuca arundinacea (common competitor) suggested the following competitive hierarchy: S. altissima = F. arundinacea > S. shortii. Using classical growth analysis, we found that the competitive hierarchy was related closely to components of plant size (dry mass, height, leaf area, leaf area duration) and not to relative growth rate or any of its components (net assimilation rate, leaf area ratio, leaf weight ratio, specific leaf area). Solidago shortii allocated proportionately more dry mass to roots (but not to rhizomes) and had significantly greater root/shoot and (root + rhizome)/shoot ratios than did S. altissima. Thus, while the morphological traits of S. shortii enable it to tolerate drier habitats than S. altissima, in moist sites S. shortii easily would be overtopped and shaded out by S. altissima. Low competitive ability may be one of several factors contributing to the narrow endemism of S. shortii.  相似文献   
107.
108.
Seeds with deep simple double morphophysiological dormancy (MPD) need cold stratification during the first winter after dispersal for radicle emergence, followed by the summer for root and bud development and finally a second winter for shoot emergence. In a previous study, we demonstrated that Trillium camschatcense seeds have this type of dormancy with radicles emerging from most seeds after the first winter. However, radicles also emerged from a few seeds in autumn during the same year as dispersal. We thought that temperatures after seed dispersal played a role in radicle emergence before the first winter. To confirm our idea, we investigated germination phenology outdoors, relationships between temperatures after seed dispersal and radicle emergence in the first year outdoors, radicle emergence in the first winter under varied temperatures using incubators, and shoot emergence from seeds with an emerged radicle in the first year outdoors. Our phenology study confirmed that T. camschatcense seeds have deep simple double MPD. Over 7 years, 0.2–7.5% of radicles emerged in the first year before winter and these percentages were moderately positively correlated with temperatures, especially minimum temperatures. Increasing August and September temperatures increased radicle emergence in the laboratory. Shoots emerged from seeds with an emerged radicle in the first year after the first winter. With increased autumn temperatures in warmer regions or with global warming, we predict that germination phenology may shift: increased radicle emergence in the first year and shoot emergence following the first (and not second) winter.  相似文献   
109.

Background  

The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis.  相似文献   
110.
  • Species responses to climate change will be primarily driven by their environmental tolerance range, or niche breadth, with the expectation that broad niches will increase resilience. Niche breadth is expected to be larger in more heterogeneous environments and moderated by life history. Niche breadth also varies across life stages. Therefore, the life stage with the narrowest niche may serve as the best predictor of climatic vulnerability. To investigate the relationship between niche breadth, climate and life stage we identify germination niche breadth for dormant and non‐dormant seeds in multiple populations of three milkweed (Asclepias) species.
  • Complementary trials evaluated germination under conditions simulating historic and predicted future climate by varying cold–moist stratification temperature, length and incubation temperature. Germination niche breadth was derived from germination evenness across treatments (Levins Bn), with stratified seeds considered less dormant than non‐stratified seeds.
  • Germination response varies significantly among species, populations and treatments. Cold–moist stratification ≥4 weeks (1–3 °C) followed by incubation at 25/15 °C+ achieves peak germination for most populations. Germination niche breadth significantly expands following stratification and interacts significantly with latitude of origin. Interestingly, two species display a positive relationship between niche breadth and latitude, while the third presents a concave quadratic relationship.
  • Germination niche breadth significantly varies by species, latitude and population, suggesting an interaction between source climate, life history and site‐specific factors. Results contribute to our understanding of inter‐ and intraspecific variation in germination, underscore the role of dormancy in germination niche breadth, and have implications for prioritising and conserving species under climate change.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号