首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2455篇
  免费   131篇
  国内免费   1篇
  2587篇
  2023年   1篇
  2022年   15篇
  2021年   21篇
  2020年   15篇
  2019年   23篇
  2018年   30篇
  2017年   29篇
  2016年   49篇
  2015年   87篇
  2014年   102篇
  2013年   181篇
  2012年   157篇
  2011年   146篇
  2010年   98篇
  2009年   115篇
  2008年   155篇
  2007年   162篇
  2006年   167篇
  2005年   164篇
  2004年   152篇
  2003年   164篇
  2002年   191篇
  2001年   24篇
  2000年   16篇
  1999年   15篇
  1998年   34篇
  1997年   26篇
  1996年   23篇
  1995年   18篇
  1994年   19篇
  1993年   26篇
  1992年   25篇
  1991年   15篇
  1990年   13篇
  1989年   10篇
  1988年   10篇
  1987年   2篇
  1986年   10篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   21篇
  1981年   10篇
  1980年   9篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1969年   1篇
  1968年   2篇
排序方式: 共有2587条查询结果,搜索用时 0 毫秒
111.
18β-Glycyrrhetinic acid (GA) is the aglycone of glycyrrhizin that is a component of Glycyrrhiza, and has several pharmacological actions in the central nervous system. Recently, GA has been demonstrated to reach the brain by crossing the blood-brain barrier in rats after oral administration of a Glycyrrhiza-containing traditional Japanese medicine, yokukansan. These findings suggest that there are specific binding sites for GA in the brain. Here we show evidence that [3H]GA binds specifically to several brain areas by quantitative autoradiography; the density was higher in the hippocampus, moderate in the caudate putamen, nucleus accumbens, amygdala, olfactory bulb, cerebral cortex, thalamus, and mid brain, and lower in the brain stem and cerebellum. Several kinds of steroids, gap junction-blocking reagents, glutamate transporter-recognized compounds, and glutamate receptor agonists did not inhibit the [3H]GA binding. Microautoradiography showed that the [3H]GA signals in the hippocampus were distributed in small non-neuronal cells similar to astrocytes. Immunohistochemical analysis revealed that immunoreactivity of 11β-hydroxysteroid dehydrogenase type-1 (11β-HSD1), a defined molecule recognized by GA, was detected mainly in neurons, moderately in astrocytes, and very slightly in microglial cells, of the hippocampus. These results demonstrate that specific binding sites for GA exist in rat brain tissue, and suggest that the pharmacological actions of GA may be related to 11β-HSD1 in astrocytes. This finding provides important information to understand the pharmacology of GA in the brain.  相似文献   
112.
Wakida NM  Botvinick EL  Lin J  Berns MW 《PloS one》2010,5(12):e15462

Background

Establishing and maintaining polarization is critical during cell migration. It is known that the centrosome contains numerous proteins whose roles of organizing the microtubule network range include nucleation, stabilization and severing. It is not known whether the centrosome is necessary to maintain polarization. Due to its role as the microtubule organizing center, we hypothesize that the centrosome is necessary to maintain polarization in a migrating cell. Although there have been implications of its role in cell migration, there is no direct study of the centrosome''s role in maintaining polarization. In this study we ablate the centrosome by intracellular laser irradiation to understand the role of the centrosome in two vastly different cell types, human osteosarcoma (U2OS) and rat kangaroo kidney epithelial cells (PtK). The PtK cell line has been extensively used as a model for cytoskeletal dynamics during cell migration. The U2OS cell line serves as a model for a complex, single migrating cell.

Methodology/Principal Findings

In this study we use femtosecond near-infrared laser irradiation to remove the centrosome in migrating U2OS and PtK2 cells. Immunofluorescence staining for centrosomal markers verified successful irradiation with 94% success. A loss of cell polarization is observed between 30 and 90 minutes following removal of the centrosome. Changes in cell shape are correlated with modifications in microtubule and actin organization. Changes in cell morphology and microtubule organization were quantified revealing significant depolarization resulting from centrosome irradiation.

Conclusions/Significance

This study demonstrates that the centrosome is necessary for the maintenance of polarization during directed cell migration in two widely different cell types. Removal of the centrosome from a polarized cell results in the reorganization of the microtubule network into a symmetric non-polarized phenotype. These results demonstrate that the centrosome plays a critical role in the maintenance of cytoskeletal asymmetry during cell migration.  相似文献   
113.
During meiotic prophase in fission yeast, the nucleus migrates back and forth between the two ends of the cell, led by the spindle pole body (SPB). This nuclear oscillation is dependent on astral microtubules radiating from the SPB and a microtubule motor, cytoplasmic dynein. Here we have examined the dynamic behavior of astral microtubules labeled with the green fluorescent protein during meiotic prophase with the use of optical sectioning microscopy. During nuclear migrations, the SPB mostly follows the microtubules that extend toward the cell cortex. SPB migrations start when these microtubules interact with the cortex and stop when they disappear, suggesting that these microtubules drive nuclear migrations. The microtubules that are followed by the SPB often slide along the cortex and are shortened by disassembly at their ends proximal to the cortex. In dynein-mutant cells, where nuclear oscillations are absent, the SPB never migrates by following microtubules, and microtubule assembly/disassembly dynamics is significantly altered. Based on these observations, together with the frequent accumulation of dynein at a cortical site where the directing microtubules interact, we propose a model in which dynein drives nuclear oscillation by mediating cortical microtubule interactions and regulating the dynamics of microtubule disassembly at the cortex.  相似文献   
114.
Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.  相似文献   
115.
In a previous study, a single nucleotide polymorphism (SNP) diagnostic system named the SMart Amplification Process version 2 (SMAP 2) was reported, which enabled rapid gene diagnostics from crude samples such as whole blood. The asymmetric primer design and use of Taq MutS were reported as innovative background suppression technologies employed by SMAP 2, but Taq MutS is known to display differential affinities for various mismatch combinations, and hence may not be entirely effective for all possible applications. To address this issue we developed another approach using a competitive probe (CP) to enhance background suppression technology instead of Taq MutS. CP is a 3'-end aminated oligonucleotide that competes with 3'-end of a discrimination primer or the self-priming elongation site on intermediate product 2 (IM2) for non-target sequences, such as the alternative allele. The preferred hybridization kinetics for the full-match CP on the non-target sequence results in effective background suppression in SMAP 2 assays. By using a CP, we demonstrated the sensitive detection of EGFR gene mutations in purified genomic DNA from mixed cell populations. The CP approach is another tool enhancing the effectiveness and versatility of SMAP 2 assays, expanding its potential applications, and reinforcing its position as a highly effective technology for molecular diagnostics.  相似文献   
116.
Host genetic factors may be important determinants of susceptibility to tuberculosis, and several candidate gene polymorphisms have been shown to date. A series of recent reports concerning rare human deficiencies in the type-1 cytokine pathway suggest that more subtle variants of relevant genes may also contribute to susceptibility to tuberculosis at the general population level. To investigate whether polymorphisms in the interleukin-12 receptor (IL-12R) gene predispose individuals to tuberculosis, we studied these genes by single-strand conformational polymorphism analysis and direct sequencing. Although no common polymorphisms could be identified in the IL-12R beta 2 gene ( IL-12RB2), we confirmed four single nucleotide polymorphisms (SNPs; 641A-->G, 684C-->T, 1094T-->C, and 1132G-->C) causing three missense variants (Q214R, M365T, G378R) and one synonymous substitution in the extracellular domain of the IL-12R beta 1 gene ( IL12RB1). All SNPs were in almost perfect linkage disequilibrium (D'=0.98), and two common haplotypes of IL12RB1(allele 1: Q214-M365-G378; allele 2: R214-T365-R378) were revealed. Polymerase chain reaction/restriction fragment length polymorphism and sequence analyses were used to type IL12RB1polymorphisms in 98 patients with tuberculosis and 197 healthy controls in Japanese populations. In our case-control association study of tuberculosis, the R214-T365-R378 allele (allele 2) was over-represented in patients with tuberculosis, and homozygosity for R214-T365-R378 (the 2/2 genotype) was significantly associated with tuberculosis (odds ratio: 2.45; 95% CI: 1.20-4.99; P=0.013). In healthy subjects, homozygotes for R214-T365-R378 had lower levels of IL-12-induced signaling, according to differences in cellular responses to IL-12 between two haplotypes. These data suggest that the R214-T365-R378 allele, i.e., variation in IL12RB1, contribute to tuberculosis susceptibility in the Japanese population. This genetic variation may predispose individuals to tuberculosis infection by diminishing receptor responsiveness to IL-12 and to IL-23, leading to partial dysfunction of interferon-gamma-mediated immunity.  相似文献   
117.
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate and Pi using Mg2+ or Mn2+ as a cofactor. PEPC plays a key role in photosynthesis by C4 and Crassulacean acid metabolism plants, in addition to its many anaplerotic functions. Recently, three-dimensional structures of PEPC from Escherichia coli and the C4 plant maize (Zea mays) were elucidated by X-ray crystallographic analysis. These structures reveal an overall square arrangement of the four identical subunits, making up a "dimer-of-dimers" and an eight-stranded beta barrel structure. At the C-terminal region of the beta barrel, the Mn2+ and a PEP analog interact with catalytically essential residues, confirmed by site-directed mutagenesis studies. At about 20A from the beta barrel, an allosteric inhibitor (aspartate) was found to be tightly bound to down-regulate the activity of the E. coli enzyme. In the case of maize C4-PEPC, the putative binding site for an allosteric activator (glucose 6-phosphate) was also revealed. Detailed comparison of the various structures of E. coli PEPC in its inactive state with maize PEPC in its active state shows that the relative orientations of the two subunits in the basal "dimer" are different, implicating an allosteric transition. Dynamic movements were observed for several loops due to the binding of either an allosteric inhibitor, a metal cofactor, a PEP analog, or a sulfate anion, indicating the functional significance of these mobile loops in catalysis and regulation. Information derived from these three-dimensional structures, combined with related biochemical studies, has established models for the reaction mechanism and allosteric regulation of this important C-fixing enzyme.  相似文献   
118.
Hyperhomocysteinemia has been reported to be an independent risk factor for atherosclerosis and atherothrombosis. However, the molecular mechanism by which hyperhomocysteinemia can lead to atherosclerosis and atherothrombosis has not been completely described. Vascular endothelial growth factor (VEGF) has been proposed to play an important role in the progression of atherosclerosis. In the present study, we hypothesized that hyperhomocysteinemia might be associated with VEGF expression in atherosclerotic lesions. We investigated VEGF mRNA expression and VEGF secretion by homocysteine (Hcy) in differentiated THP-1 macrophages. As a result, it has been revealed that VEGF mRNA was upregulated by Hcy in a dose- and time-dependent manner in THP-1 macrophages with the increase in VEGF secretion. Importantly, other sulfur compounds, such as methionine and cysteine, showed no effect on VEGF expression, indicating that homocysteine specifically induced VEGF. Our findings suggest that hyperhomocysteinemia could promote the development of atherosclerotic lesions through VEGF induction in macrophages.  相似文献   
119.
Journal of Industrial Microbiology & Biotechnology - Menaquinone is an obligatory component of the electron-transfer pathway in microorganisms. Its biosynthetic pathway was established by...  相似文献   
120.
Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号