首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  183篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   10篇
  2004年   14篇
  2003年   14篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
91.
AimsP-glycoprotein (P-gp), one of the important drug-efflux pumps, is known to be affected by pathological conditions such as inflammation or infection. Recently, it is reported that high glucose or hyperglycemia can alternate P-gp expression levels at the blood-brain barrier or in the kidney, although the details are still unknown. Here, we analyzed the alteration of intestinal P-gp expression and function in the development of diabetes and elucidated the mechanisms.Main methodsType 1 diabetes was induced in male ddY mice by an i.p. injection of streptozotocin (STZ) (230 mg/kg). We analyzed ileal P-gp expression and function using Western blot analysis and an in situ closed loop method, respectively.Key findingsA significant reduction of P-gp expression level in ileum was found 9 days after STZ administration. In contrast, a remarkable decrease in P-gp function was observed on the 3rd and 9th days. Interestingly, nitric oxide synthase (NOS) activity in ilea was significantly increased on the 9th day. The decrease of P-gp expression levels observed on the 9th day was completely suppressed by L-NG-nitroarginine methyl ester (L-NAME), a broad range NOS inhibitor, or aminoguanidine, a specific inducible NOS (iNOS) inhibitor.SignificanceThese results indicate the possibility that nitric oxide (NO), produced by iNOS in the ileum, is involved in the reduction of ileal P-gp expression under STZ-induced diabetic conditions.  相似文献   
92.
A three-dimensional structural model of fructosyl amine oxidase from the marine yeast Pichia N1-1 was generated using the crystal structure of monomeric sarcosine oxidase from Bacillus sp. B-0618 as template. The putative active site region was investigated by site-directed mutagenesis, identifying several amino acid residues likely playing important roles in the enzyme reaction. Asn354 was identified as a residue that plays an important role in substrate recognition and that can be substituted in order to change substrate specificity while maintaining high catalytic activity. While the Asn354Ala substitution had no effect on the V max K m−1 value for fructosyl valine, the V max K m−1 value for fructosyl-ε N-lysine was decreased 3-fold, thus resulting in a 3-fold improvement in specificity for fructosyl valine over fructosyl-ε N-lysine.  相似文献   
93.
N-Methylation of (R)-1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-salsolinol] derived from dopamine was proved by in vivo microdialysis study in the rat brain. The striatum was perfused with (R)-salsolinol and N-methylated compound was identified in the dialysate using HPLC and electrochemical detection with multichanneled electrodes. N-Methylation of (R)-salsolinol was confirmed in three other regions of the brain, the substantia nigra, hypothalamus, and hippocampus. In the substantia nigra, the amount of N-methylated (R)-salsolinol was significantly larger than in the other three regions. These results indicate that around dopaminergic neurons, particularly in the substantia nigra, (R)-salsolinol was methylated into N-methyl-(R)-salsolinol, which has a chemical structure similar to that of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the selective dopaminergic neurotoxin. N-Methylation of tetrahydroisoquinolines and beta-carbolines have already been proven to increase their toxicity to dopaminergic neurons and N-methylation might be an essential step for these alkaloids to increase their toxicity. On the other hand, after perfusion of (R)-salsolinol, release of dopamine and 5-hydroxytryptamine was observed and inhibition of monoamine oxidase was indicated. (R)-Salsolinol and its derivatives may be candidates for being dopaminergic neurotoxins.  相似文献   
94.

Background/Aims

Treatment with antiviral neuraminidase inhibitors suppresses influenza viral replication and antigen production, resulting in marked attenuation of mucosal immunity and mild suppression of systemic immunity in mice. This study investigated the effects of immunomodulator clarithromycin (CAM) supplementation on mucosal and systemic immunity in pediatric patients with influenza treated with neuraminidase inhibitors.

Methods

A retrospective, non-randomized case series study was conducted among five treatment groups of 195 children aged 5.9±3.3 years infected with influenza A in 2008/2009 season. The five treatment groups were oseltamivir (OSV), zanamivir (ZNV), OSV+CAM, ZNV+CAM and untreated groups. Anti-viral secretory IgA (S-IgA) levels in nasal washes and IgG levels in sera were measured. The re-infection rate was analyzed among the same five treatment groups in the 2009/2010 season.

Results

Treatment of influenza with OSV and ZNV for 5 days attenuated the induction of anti-viral S-IgA in nasal washes and anti-viral IgG in serum, compared with the untreated group. The combination of CAM plus OSV or ZNV boosted and restored the production of mucosal S-IgA and systemic IgG. The re-infection rates in the subsequent season were significantly higher in the OSV and ZNV groups than the untreated, while CAM+OSV and CAM+ZNV tended to reduce such rate.

Conclusions

CAM restored the attenuated anti-viral mucosal and systemic immunity and reduced the re-infection rate in the subsequent year in pediatric patients with influenza treated with OSV and ZNV.  相似文献   
95.
Disturbed blood flow induces apoptosis of vascular endothelial cells, which causes atherosclerosis. In this issue, Heo et al. (2011. J. Cell Biol. doi:10.1083/jcb.201010051) sheds light on p53's role in this phenomenon. Disturbed flow induces peroxynitrite production, which activates protein kinase C ζ and it's binding to the E3 SUMO (small ubiquitin-like modifier) ligase PIASy (protein inhibitor of activated STATy). This leads to p53 SUMOylation and its export to the cytosol, where it binds to the antiapoptotic protein Bcl-2 to induce apoptosis.  相似文献   
96.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   
97.
Keratin 12 (K12) is an intermediate-filament protein expressed specifically in corneal epithelium. Recently, we isolated K12 cDNA from a human corneal epithelial cDNA library and determined its full sequence. Herein, we present the exon-intron boundary structure and chromosomal localization of human K12. In addition, we report four K12 mutations in Meesmann corneal epithelial dystrophy (MCD), an autosomal dominant disorder characterized by intraepithelial microcysts and corneal epithelial fragility in which mutations in keratin 3 (K3) and K12 have recently been implicated. In the human K12 gene, we identified seven introns, defining eight individual exons that cover the coding sequence. Together the exons and introns span approximately 6 kb of genomic DNA. Using FISH, we found that the K12 gene mapped to 17q12, where a type I keratin cluster exists. In this study, four new K12 mutations (Arg135Gly, Arg135Ile, Tyr429Asp, and Leu140Arg) were identified in three unrelated MCD pedigrees and in one individual with MCD. All mutations were either in the highly conserved alpha-helix-initiation motif of rod domain 1A or in the alpha-helix-termination motif of rod domain 2B. These sites are essential for keratin filament assembly, suggesting that the mutations described above may be causative for MCD. Of particular interest, one of these mutations (Tyr429Asp), detected in both affected individuals in one of our pedigrees, is the first mutation to be identified within the alpha-helix-termination motif in type I keratin.  相似文献   
98.
TSLP induces Th2 cytokine production by Th2 cells and various other types of cells, thereby contributing to Th2-type immune responses and development of allergic disorders. We found that house dust mite (HDM) extract induced TSLP production by nasal epithelial cells, suggesting that TSLP may be involved in development of HDM-induced allergic rhinitis (AR). To investigate that possibility in greater detail, wild-type and TSLP receptor-deficient (TSLPR?/?) mice on the C57BL/6J background were repeatedly treated intranasally with HDM extract. The frequency of sneezing, numbers of eosinophils and goblet cells, thickness of submucosal layers, serum levels of total IgE and HDM-specific IgG1, and levels of IL-4, IL-5 and IL-13 in the culture supernatants of HDM-stimulated LN cells were comparable in the two mouse strains. Those findings indicate that, in mice, TSLPR is not crucial for development of HDM-induced AR.  相似文献   
99.
Supplemental oxygen inhalation is frequently used to treat severe respiratory failure; however, prolonged exposure to hyperoxia causes hyperoxic acute lung injury (HALI), which induces acute respiratory distress syndrome and leads to high mortality rates. Recent investigations suggest the possible role of NLRP3 inflammasomes, which regulate IL-1β production and lead to inflammatory responses, in the pathophysiology of HALI; however, their role is not fully understood. In this study, we investigated the role of NLRP3 inflammasomes in mice with HALI. Under hyperoxic conditions, NLRP3−/− mice died at a higher rate compared with wild-type and IL-1β−/− mice, and there was no difference in IL-1β production in their lungs. Under hyperoxic conditions, the lungs of NLRP3−/− mice exhibited reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, as well as increased and decreased expression of MMP-9 and Bcl-2, respectively. NLRP3−/− mice exhibited diminished expression and activation of Stat3, which regulates MMP-9 and Bcl-2, in addition to increased numbers of apoptotic alveolar epithelial cells. In vitro experiments revealed that alveolar macrophages and neutrophils promoted Stat3 activation in alveolar epithelial cells. Furthermore, NLRP3 deficiency impaired the migration of neutrophils and chemokine expression by macrophages. These findings demonstrate that NLRP3 regulates Stat3 signaling in alveolar epithelial cells by affecting macrophage and neutrophil function independent of IL-1β production and contributes to the pathophysiology of HALI.  相似文献   
100.
Epithelial neutrophil-activating peptide-78 (ENA-78) is a member of CXC chemokines. It is produced by endothelial cells stimulated with interleukin-1 (IL-1), along with other CXC chemokines such as IL-8 and growth-related oncogene protein-alpha (GRO-alpha). IL-1-induced ENA-78 production by endothelial cells may be important for the regulation of neutrophil activation. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and affects the expression of various genes. We examined the effect of 15d-PGJ(2) on the expression of ENA-78 in cultured endothelial cells stimulated with IL-1beta. 15d-PGJ(2) inhibited the IL-1beta-induced expression of ENA-78, but not the expression of IL-8 or GRO-alpha in response to IL-1. Ciglitazone, another agonist for PPAR-gamma, had no effect on the expression of ENA-78, suggesting that 15d-PGJ(2) may inhibit the expression of ENA-78 in a PPAR-gamma-independent manner. 15d-PGJ(2) may modulate inflammatory reactions by regulating the balance of CXC chemokines in endothelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号