首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   10篇
  2004年   14篇
  2003年   14篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
61.
The recently discovered fructosyl peptide oxidase from Phaeosphaeria nodorum (PnFPOX) was demonstrated to react with the glycated hexapeptide measurement standard of hemoglobin A1c, fVHLTPE. The highly reactive Coniochaeta FPOX (FPOX-C) showed no detectable activity with the hexapeptide. Two loop regions were identified as having important effects on the enzymatic properties of FPOX. The first loop has a strong influence on the ability to bind larger glycated peptides, while the second loop has a significant effect on catalytic activity. Loop-substitution mutants showed that the highest activity against fVHLTPE resulted from the combination of the first loop from PnFPOX and the second loop from FPOX-C. The most promising engineered FPOX created, which showed 17-fold greater dehydrogenase activity against fVHLTPE than wild-type PnFPOX, was the FPOX-C mutant with a PnFPOX-derived loop 1 region and an Asn56Ala substitution.  相似文献   
62.
The relationship between food web complexity and stability has been the subject of a long-standing debate in ecology. Although rapid changes in the food web structure through adaptive foraging behavior can confer stability to complex food webs, as reported by Kondoh (Science 299:1388–1391, 2003), the exact mechanisms behind this adaptation have not been specified in previous studies; thus, the applicability of such predictions to real ecosystems remains unclear. One mechanism of adaptive foraging is evolutionary change in genetically determined prey use. We constructed individual-based models of evolution of prey use by predators assuming explicit population genetics processes, and examined how this evolution affects the stability (i.e., the proportion of species that persist) of the food web and whether the complexity of the food web increased the stability of the prey–predator system. The analysis showed that the stability of food webs decreased with increasing complexity regardless of evolution of prey use by predators. The effects of evolution on stability differed depending on the assumptions made regarding genetic control of prey use. The probabilities of species extinctions were associated with the establishment or loss of trophic interactions via evolution of the predator, indicating a clear link between structural changes in the food web and community stability.  相似文献   
63.
64.
The logistic model is a fundamental population model often used as the basis for analyzing wildlife population dynamics. In the classic logistic model, however, population dynamics may be difficult to characterize if habitat size is temporally variable because population density can vary at a constant abundance, which results in variable strength of density‐dependent feedback for a given population size. To incorporate habitat size variability, we developed a general population model in which changes in population abundance, density, and habitat size are taken into account. From this model, we deduced several predictions for patterns and processes of population dynamics: 1) patterns of fluctuation in population abundance and density can diverge, with respect of their correlation and relative variability; and 2) along with density dependence, habitat size fluctuation can affect population growth with a time lag because changes in habitat size result in changes in population density. In order to test these predictions, we applied our model to population dynamics data of 36 populations of Tigriopus japonicus, a marine copepod inhabiting tide pools of variable sizes caused by weather processes. As expected, we found a significant difference in the fluctuation patterns of population abundance and density of T. japonicus populations with respect to the correlation between abundance and density and their relative variability, which correlates positively with the variability of habitat size. In addition, we found direct and lagged‐indirect effects of weather processes on population growth, which were associated with density dependence and impose regulatory forces on local and regional population dynamics. These results illustrate how changes in habitat size can have an impact on patterns and processes of wildlife population dynamics. We suggest that without knowledge of habitat size fluctuation, measures of population size and its variability as well as inferences about the processes of population dynamics may be misleading.  相似文献   
65.
66.
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a chlorine disinfection by-product in drinking water, is carcinogenic in rats and genotoxic in mammalian cells in vitro. In the current study, the mechanism of genotoxicity of MX in human lymphoblastoid TK6 cells was investigated by use of the Comet assay, the micronucleus test, and the thymidine kinase (TK) gene-mutation assay. MX induced a concentration-dependent increase in micronuclei and TK mutations. The lowest effective concentrations in the MN test and the TK gene-mutation assay were 37.5μM and 25μM, respectively. In the Comet assay, a slight although not statistically significant increase was observed in the level of DNA damage induced by MX in the concentration range of 25-62.5μM. Molecular analysis of the TK mutants revealed that MX induced primarily point mutations or other small intragenic mutations (61%), while most of the remaining TK mutants (32%) were large deletions at the TK locus, leading to the hemizygous-type loss-of-heterozygosity (LOH) mutations. These findings show that aside from inducing point mutations, MX also generates LOH at the TK locus in human cells and may thus cause the inactivation of tumour-suppressor genes by LOH.  相似文献   
67.
The in vivo micronucleus assay working group of the International Workshop on Genotoxicity Testing (IWGT) discussed new aspects in the in vivo micronucleus (MN) test, including the regulatory acceptance of data derived from automated scoring, especially with regard to the use of flow cytometry, the suitability of rat peripheral blood reticulocytes to serve as the principal cell population for analysis, the establishment of in vivo MN assays in tissues other than bone marrow and blood (for example liver, skin, colon, germ cells), and the biological relevance of the single-dose-level test. Our group members agreed that flow cytometric systems to detect induction of micronucleated immature erythrocytes have advantages based on the presented data, e.g., they give good reproducibility compared to manual scoring, are rapid, and require only small quantities of peripheral blood. Flow cytometric analysis of peripheral blood reticulocytes has the potential to allow monitoring of chromosome damage in rodents and also other species as part of routine toxicology studies. It appears that it will be applicable to humans as well, although in this case the possible confounding effects of splenic activity will need to be considered closely. Also, the consensus of the group was that any system that meets the validation criteria recommended by the IWGT (2000) should be acceptable. A number of different flow cytometric-based micronucleus assays have been developed, but at the present time the validation data are most extensive for the flow cytometric method using anti-CD71 fluorescent staining especially in terms of inter-laboratory collaborative data. Whichever method is chosen, it is desirable that each laboratory should determine the minimum sample size required to ensure that scoring error is maintained below the level of animal-to-animal variation. In the second IWGT, the potential to use rat peripheral blood reticulocytes as target cells for the micronucleus assay was discussed, but a consensus regarding acceptability for regulatory purposes could not be reached at that time. Subsequent validation efforts, combined with accumulated published data, demonstrate that blood-derived reticulocytes from rats as well as mice are acceptable when young reticulocytes are analyzed under proper assay protocol and sample size. The working group reviewed the results of micronucleus assays using target cells/tissues other than hematopoietic cells. We also discussed the relevance of the liver micronucleus assay using young rats, and the importance of understanding the maturation of enzyme systems involved in the processes of metabolic activation in the liver of young rats. Although the consensus of the group was that the more information with regard to the metabolic capabilities of young rats would be useful, the published literature shows that young rats have sufficient metabolic capacity for the purposes of this assay. The use of young rats as a model for detecting MN induction in the liver offers a good alternative methodology to the use of partial hepatectomy or mitogenic stimulation. Additional data obtained from colon and skin MN models have been integrated into the data bases, enhancing confidence in the utility of these models. A fourth topic discussed by the working group was the regulatory acceptance of the single-dose-level assay. There was no consensus regarding the acceptability of a single dose level protocol when dose-limiting toxicity occurs. The use of a single dose level can lead to problems in data interpretation or to the loss of animals due to unexpected toxicity, making it necessary to repeat the study with additional doses. A limit test at a single dose level is currently accepted when toxicity is not dose-limiting.  相似文献   
68.
The mechanism underlying plaque-independent neuronal death in Alzheimer disease (AD), which is probably responsible for early cognitive decline in AD patients, remains unclarified. Here, we show that a toxic soluble Abeta assembly (TAbeta) is formed in the presence of liposomes containing GM1 ganglioside more rapidly and to a greater extent from a hereditary variant-type ("Arctic") Abeta than from wild-type Abeta. TAbeta is also formed from soluble Abeta through incubation with natural neuronal membranes prepared from aged mouse brains in a GM1 ganglioside-dependent manner. An oligomer-specific antibody (anti-Oligo) significantly suppresses TAbeta toxicity. Biophysical and structural analyses by atomic force microscopy and size exclusion chromatography revealed that TAbeta is spherical with diameters of 10-20 nm and molecular masses of 200-300 kDa. TAbeta induces neuronal death, which is abrogated by the small interfering RNA-mediated knockdown of nerve growth factor receptors, including TrkA and p75 neurotrophin receptor. Our results suggest that soluble Abeta assemblies, such as TAbeta, can cause plaque-independent neuronal death that favorably occurs in nerve growth factor-dependent neurons in the cholinergic basal forebrain in AD.  相似文献   
69.

Aims

Calmodulin (CaM) plays a key role in modulating channel gating in ryanodine receptor (RyR2). Here, we investigated (a) the pathogenic role of CaM in the channel disorder in CPVT and (b) the possibility of correcting the CPVT-linked channel disorder, using knock-in (KI) mouse model with CPVT-associated RyR2 mutation (R2474S).

Methods and results

Transmembrane potentials were recorded in whole cell current mode before and after pacing (1–5 Hz) in isolated ventricular myocytes. CaM binding was assessed by incorporation of exogenous CaM fluorescently labeled with HiLyte Fluor® in saponin-permeabilized myocytes. In the presence of cAMP (1 μM) the apparent affinity of CaM binding to the RyR decreased in KI cells (Kd: 140–400 nM), but not in WT cells (Kd: 110–120 nM). Gly-Ser-His-CaM (GSH-CaM that has much higher RyR-binding than CaM) restored normal binding to the RyR of cAMP-treated KI cells (140 nM). Neither delayed afterdepolarization (DAD) nor triggered activity (TA) were observed in WT cells even at 5 Hz pacing, whereas both DAD and TA were observed in 20% and 12% of KI cells, respectively. In response to 10 nM isoproterenol, only DAD (but not TA) was observed in 11% of WT cells, whereas in KI cells the incidence of DAD and TA further increased to 60% and 38% of cells, respectively. Addition of GSH-CaM (100 nM) to KI cells decreased both DADs and TA (DAD: 38% of cells; TA: 10% of cells), whereas CaM (100 nM) had no appreciable effect. Addition of GSH-CaM to saponin-permeabilized KI cells decreased Ca2+ spark frequency (+33% of WT cells), which otherwise markedly increased without GSH-CaM (+100% of WT cells), whereas CaM revealed much less effect on the Ca2+ spark frequency (+76% of WT cells). Then, by incorporating CaM or GSH-CaM to intact cells (with protein delivery kit), we assessed the in situ effect of GSH-CaM (cytosolic [CaM] = ∼240 nM, cytosolic [GSH-CaM] = ∼230 nM) on the frequency of spontaneous Ca2+ transient (sCaT, % of total cells). Addition of 10 nM isoproterenol to KI cells increased sCaT after transient 5 Hz pacing (37%), whereas it was much more attenuated by GSH-CaM (9%) than by CaM (26%) (P < 0.01 vs CaM).

Conclusions

Several disorders in the RyR channel function characteristic of the CPVT-mutant cells (increased spontaneous Ca2+ leak, delayed afterdepolarization, triggered activity, Ca2+ spark frequency, spontaneous Ca2+ transients) can be corrected to a normal function by increasing the affinity of CaM binding to the RyR.  相似文献   
70.
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号