首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   8篇
  183篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   15篇
  2007年   12篇
  2006年   8篇
  2005年   10篇
  2004年   14篇
  2003年   14篇
  2002年   12篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
11.
A novel fluorescent sensing system for alpha-glycated amino acids was created based on fructosyl amino acid binding protein (FABP) from Agrobacterium tumefaciens. The protein was found to bind specifically to the alpha-glycated amino acids fructosyl glutamine (Fru-Gln) and fructosyl valine (Fru-Val) while not binding to epsilon-fructosyl lysine. An Ile166Cys mutant of FABP was created by genetic engineering and modified with the environmentally sensitive fluorophore acrylodan. The acrylodan-conjugated mutant FABP showed eight-fold greater sensitivity to Fru-Val than the unconjugated protein and could detect concentrations as low as 17 nM, making it over 100-fold more sensitive than enzyme-based detection systems. Its high sensitivity and specificity for alpha-substituted fructosyl amino acids makes the new sensing system ideally suited for the measurement of hemoglobin A1c (HbA1c), a major marker of diabetes.  相似文献   
12.
To gain insight into the mechanistic features for aromatase inactivation by the typical suicide substrates, androsta-1,4-diene-3,17-dione (ADD, 1) and its 6-ene derivative 2, we synthesized 19-substituted (methyl and halogeno) ADD and 1,4,6-triene derivatives 8 and 10 along with 4,6-diene derivatives 9 and tested for their ability to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. 19-Methyl-substituted steroids were the most powerful competitive inhibitors of aromatase (Ki: 8.2–40 nM) in each series. Among the 19-substituted inhibitors examined, 19-chloro-ADD and its 6-ene derivatives (7b and 9b) inactivated aromatase in a time-dependent manner in the presence of NADPH in air while the other ones did not. The time-dependent inactivation was blocked by the substrate AD and required NADPH. Only the time-dependent inactivators 7b and 9b in series of 1,4-diene and 1,4,6-triene steroids as well as all of 4,6-diene steroids 9, except for the methyl compound 9a, served as a substrate for aromatase to yield estradiol and/or its 6-ene estradiol with lower conversion rates compared to the corresponding parent steroids 1,4-diene, 1,4,6-triene and 4,6-diene derivatives. The present findings strongly suggest that the aromatase reaction, 19-oxygenation, at least in part, would be involved in the time-dependent inactivation of aromatase by the suicide substrates 1 and 2, where the 19-substitutent would play a critical role in the aromatase reaction probably though steric and electronic reasons.  相似文献   
13.
An Arthrobacter sp. was isolated that, when induced by fructosyl-valine, expressed a fructosyl-amine oxidase (FAOD) that was specific for -glycated amino acids. The N-terminal amino acid sequence of the purified oxidase was determined and used to design oligonucleotides to amplify the gene by inverse PCR. Expression of the gene in Escherichia coli produced 0.23 units FAOD per mg protein, over 30-fold greater than native expression levels, with properties almost indistinguishable from the native enzyme. The presence of FAOD was confirmed in other Arthrobacter ssp.Revisions requested 8 September 2004; Revisions received 4 November 2004  相似文献   
14.
Aromatase catalyzes the conversion of androstenedione (1a, AD) to estrone through three sequential oxygenations of the 19-methyl group. To gain insight into the spatial nature of the AD binding (active) site of aromatase in relation to the catalytic function of the enzyme, we tested for the ability of 2alpha-substituted (halogeno, alkyl, hydroxy, and alkoxy) ADs (1b-1i) to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. All of the steroids inhibited the enzyme in a competitive manner with the apparent K(i)'s ranging from 45 to 1150 nM. 2alpha-Halogeno (F, Cl, and Br) and 2alpha-alkyl (CH3 and CH2CH3) steroids 1b-1f were powerful to good inhibitors (Ki=45-171 nM) whereas steroids 1g-1i, having an oxygen function (hydroxy or alkoxy) at C-2alpha, were poor inhibitors (Ki=670-1150 nM). Aromatization of some of the steroids with placental microsomes was analyzed by gas chromatography-mass spectrometry, indicating that the aromatization rate of the bromide 1d was about two-fold that of the natural substrate AD and that of 2alpha-methoxide 1h was similar to that of AD. Kinetic analysis of the aromatization of androgens revealed that a good substrate was not essentially a good inhibitor for aromatase.  相似文献   
15.
Wheat flour proteins were studied to identify the cultivar-specific proteins and use them to identify cultivars in flours. Proteins extracted from flours of Japanese wheat (cultivars Hokushin, Horoshirikomugi, Kitanokaori and Kachikei 33) and Canadian wheat (Canada Western Red Spring Wheat No. 1; 1CW) were analyzed by 2-DE with IEF gels over three pH ranges: pH 4-7, pH 5-8, and pH 6-11. This system enabled detection of more than 1600 protein spots. We recognized that among 50 protein spots showing cultivar-dependent qualitative changes, 25 proteins were wheat cultivar specific. These 50 protein spots were analyzed by N-terminal Edman degradation microsequencing and MALDI-TOF-MS; 21 protein spots were storage proteins, such as gliadin and low-molecular mass glutenin subunit. Five protein spots were identified as dehydroascorbate reductase (Triticum aestivum), triticin precursor (T. aestivum), alpha-amylase inhibitor (Oryza sativa), DNA-binding with one finger (Dof) zinc family protein (O. sativa), and nonphototropic hypocotyl 1 (NPH1) protein (Avena sativa). The other protein spots appeared to be hypothetical proteins (O. sativa or Arabidopsis thaliana) or functional unknown proteins. These specific proteins can be used as markers to identify wheat cultivars in blended flour composed of two or three flours.  相似文献   
16.
Transport vesicles coated with the COPII complex, which is assembled from Sar1p, Sec23p-Sec24p, and Sec13p-Sec31p, are involved in protein export from the endoplasmic reticulum (ER). We previously identified and characterized a novel Sec23p-interacting protein, p125, that is only expressed in mammals and exhibits sequence homology with phosphatidic acid-preferring phospholipase A(1) (PA-PLA(1)). In this study, we examined the localization and function of p125 in detail. By using immunofluorescence and electron microscopy, we found that p125 is principally localized in ER exit sites where COPII-coated vesicles are produced. Analyses of chimeric proteins comprising p125 and two other members of the mammalian PA-PLA(1) family (PA-PLA(1) and KIAA0725p) showed that, for localization to ER exit sites, the p125-specific N-terminal region is critical, and the putative lipase domain is interchangeable with KIAA0725p but not with PA-PLA(1). RNA interference-mediated depletion of p125 affected the organization of ER exit sites. The structure of the cis-Golgi compartment was also substantially disturbed, whereas the medial-Golgi was not. Protein export from the ER occurred without a significant delay in p125-depleted cells. Our study suggests that p125 is a mammalian-specific component of ER exit sites and participates in the organization of this compartment.  相似文献   
17.
We investigated the heat-induced cis/trans isomerization of double bonds in monounsaturated lipids. When triolein (9-cis, 18:1) was heated around 180 °C, small amounts of isomerization products were obtained depending on the heating period. The heat-induced isomerization of triolein was considerably suppressed by the addition of different antioxidants or under nitrogen stream, and these additives simultaneously inhibited the thermal oxidation of double bonds in triolein. Therefore, an intermediate of the thermal oxidation reaction might be responsible for the heat-induced isomerization of the double bonds in triolein. The thermodynamics of the heat-induced isomerization of triolein (9-cis, 18:1) and trielaidin (9-trans, 18:1) were investigated using Arrhenius plot. The Arrhenius activation energies of cis double bonds in triolein and trans double bonds in trielaidin were 106 kJ/mol and 137 kJ/mol, respectively. The calculated internal rotational barrier heights of these double bonds were similar to those of the double bond of 2-butene radical and significantly lower than those of non-radicalized double bonds in 2-butene. These results suggest that heat-induced cis/trans isomerization of triolein and trielaidin occurs mainly through the formation of radical species, which are the intermediates produced during thermal oxidation. The activation energy difference between the two forms suggests that trans trielaidin radicals are more stable than cis triolein radicals. The high thermodynamic stability of the trans double bonds in lipid radicals would influence the population of cis and trans isomers in edible oils and contribute to slight accumulation of trans-18:1 isomers during heating or industrial processing.  相似文献   
18.
19.
The production of allergen-specific IgE antibodies (Abs) in allergen-sensitized patients or animals has a mutual relationship with the immunologic response leading to allergic rhinitis. We recently reported that, after an intranasal injection of cedar pollen into mice, an interleukin-4 (IL-4)-dependent increase in serum nonspecific IgE Abs was a prerequisite for the production of serum allergen-specific IgE Abs. Here, we explored which lymphoid organs were responsive to the intranasally injected allergen and how IL-4 and IgE Abs were produced in the lymphocytes. Time-dependent changes in the total cell numbers and in in vitro IgE Ab production in various lymphoid organs revealed that the submandibular lymph nodes were the main responsible organ. After treatment with allergen (for IgE production) or allergen and complete Freund's adjuvant (for IgG production), we separated submandibular lymph node cells into macrophage-, lymphocyte-, and granulocyte-rich populations by discontinuous Percoll density-gradient centrifugation. Unexpectedly, bulk cells, but not the lymphocyte- or macrophage-rich populations, produced significant amounts of IL-4, IgE, and IgG; whereas production was restored by addition of Mac-1(+) cells from the macrophage-rich to the lymphocyte-rich fraction. Furthermore, a combination of the lymphocyte-rich population (for IgG [or IgE]) production) and the macrophage-rich population (for IgE [or IgG]) production) produced a large amount of IgE (or IgG). These results indicate that, in the initiation of allergic rhinitis, macrophages in the submandibular lymph nodes are essential not only for IL-4 or immunoglobulin production, but also for class switching of immunoglobulin in lymphocytes.  相似文献   
20.
Current enzymatic methods for the analysis of glycated proteins use flavoenzymes that catalyze the oxidative deglycation of fructosyl peptides, designated as fructosyl peptidyl oxidases (FPOXs). However, as FPOXs are oxidases, the signals derived from electron mediator-type electrochemical monitoring based on them are affected by dissolved O2. Improvement of dye-mediated dehydrogenase activity of FPOXs and its application to enzyme electrode construction were therefore undertaken. Saturation mutagenesis study on Asn56 of FPOX from Phaeosphaeria nodorum, produced mutants with marked decreases in the catalytic ability to employ O2 as the electron acceptor, while showing higher dye-mediated dehydrogenase activity employing artificial electron acceptors than the parental enzyme. Thus constructed virtually fructosyl peptide dehydrogenase, Asn56Ala, was then applied to produce an enzyme electrode for the measurement of fructosyl-α N-valyl-histidine (f-αVal-His), the protease-digested product of HbA1c. The enzyme electrode could measure f-αVal-His in the physiological target range in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号