首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3514篇
  免费   343篇
  国内免费   8篇
  2023年   12篇
  2022年   32篇
  2021年   63篇
  2020年   33篇
  2019年   46篇
  2018年   64篇
  2017年   46篇
  2016年   96篇
  2015年   167篇
  2014年   176篇
  2013年   198篇
  2012年   273篇
  2011年   275篇
  2010年   176篇
  2009年   147篇
  2008年   194篇
  2007年   198篇
  2006年   197篇
  2005年   156篇
  2004年   182篇
  2003年   133篇
  2002年   123篇
  2001年   75篇
  2000年   60篇
  1999年   92篇
  1998年   41篇
  1997年   39篇
  1996年   27篇
  1995年   25篇
  1994年   25篇
  1993年   22篇
  1992年   52篇
  1991年   40篇
  1990年   41篇
  1989年   32篇
  1988年   40篇
  1987年   29篇
  1986年   29篇
  1985年   19篇
  1984年   16篇
  1983年   14篇
  1982年   15篇
  1980年   13篇
  1979年   13篇
  1977年   15篇
  1976年   12篇
  1975年   10篇
  1974年   10篇
  1973年   11篇
  1972年   10篇
排序方式: 共有3865条查询结果,搜索用时 15 毫秒
91.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
92.

Objective

Progranulin and C1q/TNF-related protein-3 (CTRP3) were recently discovered as novel adipokines which may link obesity with altered regulation of glucose metabolism, chronic inflammation and insulin resistance.

Research Design and Methods

We examined circulating progranulin and CTRP3 concentrations in 127 subjects with (n = 44) or without metabolic syndrome (n = 83). Furthermore, we evaluated the relationship of progranulin and CTRP3 levels with inflammatory markers and cardiometabolic risk factors, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), estimated glomerular filtration rate (eGFR), and adiponectin serum concentrations, as well as carotid intima-media thickness (CIMT).

Results

Circulating progranulin levels are significantly related with inflammatory markers, hsCRP (r = 0.30, P = 0.001) and IL-6 (r = 0.30, P = 0.001), whereas CTRP3 concentrations exhibit a significant association with cardiometabolic risk factors, including waist circumference (r = −0.21), diastolic blood pressure (r = −0.21), fasting glucose (r = −0.20), triglyceride (r = −0.34), total cholesterol (r = −0.25), eGFR (r = 0.39) and adiponectin (r = 0.26) levels. Serum progranulin concentrations were higher in patients with metabolic syndrome than those of the control group (199.55 [179.33, 215.53] vs. 185.10 [160.30, 204.90], P = 0.051) and the number of metabolic syndrome components had a significant positive correlation with progranulin levels (r = 0.227, P = 0.010). In multiple regression analysis, IL-6 and triglyceride levels were significant predictors of serum progranulin levels (R 2 = 0.251). Furthermore, serum progranulin level was an independent predictor for increased CIMT in subjects without metabolic syndrome after adjusting for other cardiovascular risk factors (R 2 = 0.365).

Conclusions

Serum progranulin levels are significantly associated with systemic inflammatory markers and were an independent predictor for atherosclerosis in subjects without metabolic syndrome.

Trial Registration

ClinicalTrials.gov NCT01668888  相似文献   
93.
94.
Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears) and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus) may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE) analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.  相似文献   
95.
Prenatal exposure to alcohol has consistently been associated with adverse effects on neurodevelopment, which is collectively called fetal alcohol spectrum disorder (FASD). Increasing evidence suggest that prenatal exposure to alcohol increases the risk of developing attention deficit/hyperactivity disorder-like behavior in human. In this study, we investigated the behavioral effects of prenatal exposure to EtOH in offspring mice and rats focusing on hyperactivity and impulsivity. We also examined changes in dopamine transporter and MeCP2 expression, which may underlie as a key neurobiological and epigenetic determinant in FASD and hyperactive, inattentive and impulsive behaviors. Mouse or rat offspring born from dam exposed to alcohol during pregnancy (EtOH group) showed hyper locomotive activity, attention deficit and impulsivity. EtOH group also showed increased dopamine transporter and norepinephrine transporter level compared to control group in the prefrontal cortex and striatum. Prenatal exposure to EtOH also significantly decreased the expression of MeCP2 in both prefrontal cortex and striatum. These results suggest that prenatal exposure to EtOH induces hyperactive, inattentive and impulsive behaviors in rodent offspring that might be related to global epigenetic changes as well as aberration in catecholamine neurotransmitter transporter system.  相似文献   
96.
97.
We have previously analyzed the proteome of recombinant Escherichia coli producing poly(3-hydroxybutyrate) [P(3HB)] and revealed that the expression level of several enzymes in central metabolism are proportional to the amount of P(3HB) accumulated in the cells. Based on these results, the amplification effects of triosephosphate isomerase (TpiA) and fructose-bisphosphate aldolase (FbaA) on P(3HB) synthesis were examined in recombinant E. coli W3110, XL1-Blue, and W lacI mutant strains using glucose, sucrose and xylose as carbon sources. Amplification of TpiA and FbaA significantly increased the P(3HB) contents and concentrations in the three E. coli strains. TpiA amplification in E. coli XL1-Blue lacI increased P(3HB) from 0.4 to 1.6 to g/l from glucose. Thus amplification of glycolytic pathway enzymes is a good strategy for efficient production of P(3HB) by allowing increased glycolytic pathway flux to make more acetyl-CoA available for P(3HB) biosynthesis.  相似文献   
98.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.  相似文献   
99.
Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy.  相似文献   
100.
Chaperonins are a family of chaperones that encapsulate their substrates and assist their folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP-1 ring complex (TRiC), is a hetero-oligomeric complex composed of two rings, each formed from eight different CCT (chaperonin containing TCP-1) subunits. Each CCT subunit may have distinct substrate recognition and ATP hydrolysis properties. We have expressed each human CCT subunit individually in Escherichia coli to investigate whether they form chaperonin-like double ring complexes. CCT4 and CCT5, but not the other six CCT subunits, formed high molecular weight complexes within the E. coli cells that sedimented about 20S in sucrose gradients. When CCT4 and CCT5 were purified, they were both organized as two back-to-back rings of eight subunits each, as seen by negative stain and cryo-electron microscopy. This morphology is consistent with that of the hetero-oligomeric double-ring TRiC purified from bovine testes and HeLa cells. Both CCT4 and CCT5 homo-oligomers hydrolyzed ATP at a rate similar to human TRiC and were active as assayed by luciferase refolding and human γD-crystallin aggregation suppression and refolding. Thus, both CCT4 and CCT5 homo-oligomers have the property of forming 8-fold double rings absent the other subunits, and these complexes carry out chaperonin reactions without other partner subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号