首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6409篇
  免费   842篇
  国内免费   3篇
  2021年   91篇
  2020年   55篇
  2019年   77篇
  2018年   89篇
  2017年   88篇
  2016年   121篇
  2015年   186篇
  2014年   226篇
  2013年   273篇
  2012年   332篇
  2011年   331篇
  2010年   221篇
  2009年   192篇
  2008年   275篇
  2007年   294篇
  2006年   250篇
  2005年   242篇
  2004年   269篇
  2003年   241篇
  2002年   250篇
  2001年   207篇
  2000年   229篇
  1999年   192篇
  1998年   94篇
  1997年   80篇
  1996年   79篇
  1995年   58篇
  1994年   78篇
  1993年   64篇
  1992年   146篇
  1991年   121篇
  1990年   119篇
  1989年   112篇
  1988年   108篇
  1987年   102篇
  1986年   89篇
  1985年   100篇
  1984年   77篇
  1983年   64篇
  1982年   57篇
  1981年   72篇
  1980年   68篇
  1979年   82篇
  1978年   49篇
  1977年   63篇
  1976年   51篇
  1975年   71篇
  1974年   71篇
  1973年   45篇
  1972年   46篇
排序方式: 共有7254条查询结果,搜索用时 31 毫秒
131.
132.
133.
134.
135.
136.
137.
138.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3_induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F (6-keto-PGF), an hydrolysis product of PGI1. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF were increased by both hypocapnia and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   
139.
To test the hypothesis that maximal O2 uptake (VO2max) can be limited by O2 diffusion in the peripheral tissue, we kept O2 delivery [blood flow X arterial O2 content (CaO2)] to maximally contracting muscle equal between 1) low flow-high CaO2 and 2) high flow-low CaO2 conditions. The hypothesis predicts, because of differences in the capillary PO2 profile, that the former condition will result in both a higher VO2max and muscle effluent venous PO2 (PVO2). We studied the relations among VO2max, PVO2, and O2 delivery during maximal isometric contractions in isolated, in situ dog gastrocnemius muscle (n = 6) during these two conditions. O2 delivery was matched by varying arterial O2 partial pressure and adjusting flow to the muscle accordingly. A total of 18 matched O2 delivery pairs were obtained. As planned, O2 delivery was not significantly different between the two treatments. In contrast, VO2max was significantly higher [10.4 +/- 0.5 (SE) ml.100 g-1.min-1; P = 0.01], as was PVO2 (25 +/- 1 Torr; P less than 0.01) in the low flow-high CaO2 treatment compared with the high flow-low CaO2 treatment (9.1 +/- 0.4 ml.100 g-1.min-1 and 20 +/- 1 Torr, respectively). The rate of fatigue was greater in the high flow-low CaO2 condition, as was lactate output from the muscle and muscle lactate concentration. The results of this study show that VO2max is not uniquely dependent on O2 delivery and support the hypothesis that VO2max can be limited by peripheral tissue O2 diffusion.  相似文献   
140.
O2 delivery to maximally working muscle was decreased by altering hemoglobin (Hb) concentration and arterial PO2 (PaO2) to investigate whether the reductions in maximal O2 uptake (VO2max) that occur with lowered [Hb] are in part related to changes in the effective muscle O2 diffusing capacity (DmO2). Two sets of experiments were conducted. In the initial set (n = 8), three levels of Hb [5.8 +/- 0.3, 9.4 +/- 0.1, and 14.4 +/- 0.6 (SE) g/100 ml] in the blood were used in random order to pump perfuse, at equal muscle blood flows and PaO2, maximally working isolated dog gastrocnemius muscle. VO2max declined with decreasing [Hb], but the relationship between VO2max and both the effluent venous PO2 (PvO2) and the calculated mean capillary PO2 (PcO2) was not linear through the origin and, therefore, not compatible with a single value of DmO2 (as calculated by Bohr integration using a model based on Fick's law of diffusion). To clarify these results, a second set of experiments (n = 6) was conducted in which two levels of Hb (14.0 +/- 0.6 and 6.9 +/- 0.6 g/100 ml) were each combined with two levels of oxygenation (PaO2 79 +/- 8 and 29 +/- 2 Torr) and applied in random sequence to again pump perfuse maximally working dog gastrocnemius muscle at constant blood flow. In these experiments, the relationship between VO2max and both PvO2 and calculated PcO2 for each [Hb] was consistent with a constant estimate of DmO2 as PaO2 was reduced, but the calculated DmO2 for the lower [Hb] was 33% less than that at the higher [Hb] (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号