首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   15篇
  2017年   8篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  1999年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1970年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
31.

Background  

Obligate asexual reproduction is rare in the animal kingdom. Generally, asexuals are considered evolutionary dead ends that are unable to radiate. The phytophagous mite genus Bryobia contains a large number of asexual species. In this study, we investigate the origin and evolution of asexuality using samples from 111 populations in Europe, South Africa and the United States, belonging to eleven Bryobia species. We also examine intraspecific clonal diversity for one species, B. kissophila, by genotyping individuals from 61 different populations. Knowledge on the origin of asexuality and on clonal diversity can contribute to our understanding of the paradox of sex.  相似文献   
32.
Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below‐ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.  相似文献   
33.

Background  

Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species divided over three genera. Knowledge of interaction specificity is important to test the hypothesis that inhabitants (symbionts) are taxonomically less diverse than 'exhabitants' (hosts) and to test the hypothesis that transmission mode is an important determinant for interaction specificity.  相似文献   
34.
35.
Plant species richness (PSR) increases nutrient uptake which depletes bioavailable nutrient pools in soil. No such relationship between plant uptake and availability in soil was found for phosphorus (P). We explored PSR effects on P mobilisation [phosphatase activity (PA)] in soil. PA increased with PSR. The positive PSR effect was not solely due to an increase in Corg concentrations because PSR remained significant if related to PA:Corg. An increase in PA per unit Corg increases the probability of the temporal and spatial match between substrate, enzyme and microorganism potentially serving as an adaption to competition. Carbon use efficiency of microorganisms (Cmic:Corg) increased with increasing PSR while enzyme exudation efficiency (PA:Cmic) remained constant. These findings suggest the need for efficient C rather than P cycling underlying the relationship between PSR and PA. Our results indicate that the coupling between C and P cycling in soil becomes tighter with increasing PSR.  相似文献   
36.
Interactions between plant and soil communities are known to play an integral role in shaping ecosystems. Plants influence the composition of soil communities and soil communities in turn influence plant performance. Such a plant–soil feedback may incur selection pressure on plants and the associating soil community. However, the evolutionary consequences of these above–belowground feedback interactions remain largely speculative. Here we assess whether plant–soil feedback effects differ between intraspecific plant populations and between generations within the same plant population. We used two populations of Trifolium pratense and assessed their performance when grown in association with their home versus away soil biota. Both populations were colonized by distinct microbial communities and performed better with their own home soil communities than with the soil community from the other intraspecific population, demonstrating intraspecific positive feedback effects of home soil. In one of the two populations, we found that plant performance and the root associated microbiota community differed between parental and progeny plants when inoculated with their own home soil. Differences in root associated community characteristics could explain more than 80% of the variation in performance among the progeny and parental plants. Our results highlight that intraspecific differences in both plant and associated soil communities shape plant–soil feedback effects, and consequently indicate that plant–soil feedback can influence the direction of selection between intraspecific plant populations.  相似文献   
37.
Semi-natural open habitats have drastically changed in the last few decades due to agricultural intensification and rural depopulation. Steppe-birds, and especially those adapted to primary stages of vegetation succession, are threatened by an increase in scrub cover, and management actions are being applied to reverse scrub encroachment and restore habitat suitability in semi-natural open habitats. In this paper we evaluated for the first time, the long-term effects of a wildfire on habitat structure, vegetation productivity, and the associated response of an endangered scrub-steppe specialist bird, the Dupont’s Lark Chersophilus duponti. Wildfire occurred in a Mediterranean steppe of central Spain dominated by permanent community of dwarf cushions scrubs. Bird abundance was evaluated by line transects in the burnt and unburnt areas 3 years prior to the fire and 4 and 7 years after the fire. We quantified changes in habitat structure at fine scale level through vegetation sampling points and in vegetation productivity by estimating the Normalized Difference Vegetation Index (NDVI). Fire had strong effects for at least up to 4 years after the fire, when lower NDVI values, less scrub cover and fewer, but not significant, number of males were detected in the burnt area with respect to the pre-fire conditions. Seven years after fire most vegetation variables measured did not differ between areas, number of males detected within the burnt area was recovered and NDVI values in burnt area were slightly recovered but were significantly lower than in control area. Slow regeneration of the scrub cover after fire explained the unsuccessful occupation of the burnt area by the Dupont’s Lark up to several years after fire. The more dispersed and shorter habitat created by fire 7 years after the fire seems to be more suitable for the species than that in control areas. The large number of males around the burnt area may have played a role in the recolonization process. In sum, vegetation recovery and the presence of a low scrub-steppe specialist, as the Dupont’s lark, suggests that fire management could be integrated into conservation plans to effectively manage scrub encroachment processes in Mediterranean scrub-steppes.  相似文献   
38.
39.
The invasion of the Ponto–Caspian amphipod Dikerogammarus villosus in European rivers is assumed to reduce macroinvertebrate diversity and to alter ecosystem functions. D. villosus shows an extraordinarily flexible feeding behavior including the ability to use various food sources. On the other hand, its response to predation risk seems to depend on environmental factors. To evaluate the ecological function of D. villosus, we estimated the daily food consumption for different food sources and analyzed potential effects of predator avoidance behavior on feeding. D. villosus consumption of willow leaves or chironomid larvae was quantified in 24-h laboratory experiments with and without kairomones of the European bullhead (Cottus gobio). Consumption rates were estimated based on gut content and gut evacuation rate under semi-natural laboratory conditions enabling the animals to feed over the whole time of the evacuation rate experiment. We observed very high evacuation rates and consequently high consumption rates up to 89% of body weight per day. Consumption rates differed significantly between food sources: D. villosus ingested more leaves than chironomid larvae. In contrast, predator cues did not affect the feeding of D. villosus. This might be explained by its strong refuge affinity and probably benefits its successful invasion. A comparison of the estimated consumption rates with results of an own consumption experiment (and other studies) under more artificial conditions indicated that more natural conditions result in higher consumption rates. Consequently, feeding rates from highly artificial experiments should be used with great caution to assess the ecosystem function of D. villosus.  相似文献   
40.
Hemlock woolly adelgid (HWA) invasion and preemptive logging practices alter the habitat structure of New England forests and may indirectly affect associated small mammal communities. Microhabitat structure was measured and small mammals were censused in eight large experimental plots to quantify these effects. The Harvard Forest long-term ecological research experiment is a replicated two-block design that includes four ~ 0.81-ha canopy treatments: (1) hemlock control, (2) hardwood control, (3) girdled Treatment, in which hemlock trees were killed by girdling in 2005 and left standing to simulate HWA invasion, and (4) logged treatment, in which trees were removed to simulate preemptive logging management practices. Nine microhabitat characteristics were measured from plot photos revealing differences among ground and canopy microhabitat structure. Small mammals were censused during high (2012) and low (2013) abundant years. Populations of common species were estimated with mark-recapture analysis. Peromyscus spp. were not affected by treatment in either year, but southern red-backed vole populations were greatest in the girdled treatments in 2012 and rarely captured in 2013. Between 6 and 9 mammal species were recorded in all treatments and species composition varied slightly. Estimated species richness was greater in girdled treatments than hemlock controls, but did not differ between girdled and logged treatments, which suggests preemptive logging is as detrimental to some small mammal species as HWA invasion. Overall, there is little evidence of a major shift in small mammal community structure in response to HWA invasion, with only minor changes in relative abundance both years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号