首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   9篇
  188篇
  2023年   3篇
  2022年   7篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2015年   17篇
  2014年   13篇
  2013年   16篇
  2012年   15篇
  2011年   18篇
  2010年   6篇
  2009年   2篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1970年   1篇
  1969年   1篇
  1939年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
51.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   
52.
A major parameter determining the success of a bone-grafting procedure is vascularization of the area surrounding the graft. We hypothesized that implantation of a bone autograft would induce greater bone regeneration by abundant blood vessel formation. To investigate the effect of the graft on neovascularization at the defect site, we developed a micro–computed tomography (µCT) approach to characterize newly forming blood vessels, which involves systemic perfusion of the animal with a polymerizing contrast agent. This method enables detailed vascular analysis of an organ in its entirety. Additionally, blood perfusion was assessed using fluorescence imaging (FLI) of a blood-borne fluorescent agent. Bone formation was quantified by FLI using a hydroxyapatite-targeted probe and µCT analysis. Stem cell recruitment was monitored by bioluminescence imaging (BLI) of transgenic mice that express luciferase under the control of the osteocalcin promoter. Here we describe and demonstrate preparation of the allograft, calvarial defect surgery, µCT scanning protocols for the neovascularization study and bone formation analysis (including the in vivo perfusion of contrast agent), and the protocol for data analysis.The 3D high-resolution analysis of vasculature demonstrated significantly greater angiogenesis in animals with implanted autografts, especially with respect to arteriole formation. Accordingly, blood perfusion was significantly higher in the autograft group by the 7th day after surgery. We observed superior bone mineralization and measured greater bone formation in animals that received autografts. Autograft implantation induced resident stem cell recruitment to the graft-host bone suture, where the cells differentiated into bone-forming cells between the 7th and 10th postoperative day. This finding means that enhanced bone formation may be attributed to the augmented vascular feeding that characterizes autograft implantation. The methods depicted may serve as an optimal tool to study bone regeneration in terms of tightly bounded bone formation and neovascularization.  相似文献   
53.
BACKGROUND: Many teratogens induce oxidative stress, altering redox status and redox signaling; this has led to the suggestion that developmental toxicants act by disturbing redox status. The goal of these studies was to determine the consequences of altering glutathione homeostasis during organogenesis on embryo development, total DNA methylation, and activator protein-1 (AP-1) DNA binding activity and gene expression. METHODS: Gestational day 10.5 rat embryos were cultured in vitro for up to 44 hour in the presence of L-buthionine-S,R-sulfoximine (BSO), an irreversible inhibitor of gamma-glutamyl-cysteine synthetase, the rate limiting step in glutathione biosynthesis. Effects of BSO on total, oxidized and reduced glutathione, embryo development, DNA methylation, AP-1 DNA binding activity and gene expression were investigated. RESULTS: Significant depletion of glutathione by BSO was first noted at 6 hr in the embryo and at 3 hr in the yolk sac; total glutathione in the conceptus was depleted to the same extent after treatment with either 0.1 or 1.0 mM BSO. Exposure to 0.1 mM BSO did not cause a significant increase in embryotoxicity, although some impairment of growth and development was observed. In contrast, exposure to 1.0 mM BSO severely inhibited growth and development, significantly increasing the incidence of swollen hindbrains and of blebs in the forebrain, limb and maxillary regions. No significant treatment-related differences in total DNA methylation were observed. Interestingly, AP-1 DNA binding activity was similar in control and 0.1 mM BSO-treated conceptuses; however, exposure to 1.0 mM BSO increased AP-1 DNA binding at 6, 24, and 44 hr. The expression of several AP-1 family genes and of gamma-glutamylcysteine synthetase was induced in embryos cultured with 1.0 mM BSO. CONCLUSION: Exposure of embryos in vitro to BSO at a concentration that was embryotoxic induced prolonged AP-1 DNA binding activity and altered gene expression. These data suggest that AP-1 induction may serve as a biomarker of embryo stress.  相似文献   
54.
The aim of the study was to learn whether the lethal and the motor incoordination (ataxia) side effect of ondansetron (Zophren) administration is dosing-time dependent. Ondansetron is a serotonin 5-HT3 receptor antagonist used primarily to control nausea and vomiting arising from cytotoxic chemo- and radiotherapy. A total of 210 male Swiss mice 10 to 12 weeks of age were synchronized for 3 weeks by 12 h light (rest span)/12 h dark (activity span). Different doses of ondansetron were injected intraperitoneally (i.p.) at fixed times during the day to determine both the sublethal (TD50) and lethal (LD50) doses, which were, respectively, 3.7 +/- 0.6 mg/kg and 4.6 +/- 0.5 mg/kg. In the chronotoxicologic study a single dose of ondansetron (3.5 mg/kg, i.p.) was administered to different and comparable groups of animals at four different circadian stages [1, 7, 13, and 19 h after light onset (HALO)]. The lethal toxicity was statistically significantly dosing time-dependent (chi2 = 21.51, p < 0.0001). Drug dosing at 1 HALO resulted in 100% survival rate whereas drug dosing at 19 HALO was only one-half that (52%). Similarly, lowest and highest ataxia occurred when ondansetron was injected at 1 and 19 HALO, respectively (chi2 = 22.24, p < 0.0001). Effects on rectal temperature were also dosing-time related (Cosinor analysis, p < 0.0001). The characteristics of the waveform describing the temporal patterns differed between the studied variables, e.g., lethal toxicity and survival rate showing two peaks and rectal temperature showing one peak in the 24 h time series waveform pattern. Cosinor analysis also revealed a statistically significant ultradian (tau = 8 h) rhythmic component in the considered variables. Differences in curve patterns in toxicity elicited by ondansetron on a per end point basis are hypothesized to represent the phase relations between the identified 24 h and 8 h periodicities.  相似文献   
55.
Recently, we proposed a classification of HLA-DRB1 alleles that reshapes the shared epitope hypothesis in rheumatoid arthritis (RA); according to this model, RA is associated with the RAA shared epitope sequence (72-74 positions) and the association is modulated by the amino acids at positions 70 and 71, resulting in six genotypes with different RA risks. This was the first model to take into account the association between the HLA-DRB1 gene and RA, and linkage data for that gene. In the present study we tested this classification for validity in an independent sample. A new sample of the same size and population (100 RA French Caucasian families) was genotyped for the HLA-DRB1 gene. The alleles were grouped as proposed in the new classification: S1 alleles for the sequences A-RAA or E-RAA; S2 for Q or D-K-RAA; S3D for D-R-RAA; S3P for Q or R-R-RAA; and X alleles for no RAA sequence. Transmission of the alleles was investigated. Genotype odds ratio (OR) calculations were performed through conditional logistic regression, and we tested the homogeneity of these ORs with those of the 100 first trio families (one case and both parents) previously reported. As previously observed, the S2 and S3P alleles were significantly over-transmitted and the S1, S3D and X alleles were under-transmitted. The latter were grouped as L alleles, resulting in the same three-allele classification. The risk hierarchy of the six derived genotypes was the same: (by decreasing OR and with L/L being the reference genotype) S2/S3P, S2/S2, S3P/S3P, S2/L and S3P/L. The homogeneity test between the ORs of the initial and the replication samples revealed no significant differences. The new classification was therefore considered validated, and both samples were pooled to provide improved estimates of RA risk genotypes from the highest (S2/S3P [OR 22.2, 95% confidence interval 9.9-49.7]) to the lowest (S3P/L [OR 4.4, 95% confidence interval 2.3-8.4]).  相似文献   
56.
The lipid composition of a plasma membrane enriched fraction isolated from corn (Zea mays) roots was examined. On a wt basis, the lipid: protein ratio was 1.11. Phospholipids comprised 60% of total lipids with the major phospholipids being phosphatidylcholine (62%) and phosphatidylethanolamine (21%). Free sterol was the major neutral lipid. The sterol:phospholipid molar ratio was 0.31. The fatty acid composition of the membrane was predominantly linoleic (60%) and palmitic (30%).  相似文献   
57.
Triazines and derivatives of phenylurea, which are often found in outdoor water samples, induce specific changes in the yield of thein-vivo chlorophyll -fluorescence of PSII. These changes are correlated quantitatively with the concentration of the herbicides and can therefore be used to set-up a low-price monitor system. In order to detect selectively the herbicide-sensitive part of the fluorescence emission a pulse amplitude modulated fluorimeter was used. The bioassay system was optimised with respect to test organism, growing and measuring conditions. The relationship between fluorescence yield and herbicide concentrations were experimentally determined for the triazines atrazine and simazine and the phenylurea herbicide DCMU and mathematically fitted (r=0.99). The I50-values were 0.9 µM for DCMU, 2.2 µM for simazine and 3.3 µM for atrazine. The detection limit of about 0.5 µM clearly shows that the sensitivity of this bioassay system is too low to reach the requirements of the drinking water regulation. However, due to its insensitivity against complex water matrices, there is good hope to combine this fluorometric bioassay with a potent herbicide preconcentration method like a solid-phase extraction procedure.Author for correspondence  相似文献   
58.
Microcomputed tomography (microCT) analysis is a powerful tool for the evaluation of bone tissue because it provides access to the 3D microarchitecture of the bone. It is invaluable for regenerative medicine as it provides the researcher with the opportunity to explore the skeletal system both in vivo and ex vivo. The quantitative assessment of macrostructural characteristics and microstructural features may improve our ability to estimate the quality of newly formed bone. We have developed a unique procedure for analyzing data from microCT scans to evaluate bone structure and repair. This protocol describes the procedures for microCT analysis of three main types of mouse bone regeneration models (ectopic administration of bone-forming mesenchymal stem cells, and administration of cells after both long bone defects and cranial segmental bone defects) that can be easily adapted for a variety of other models. Precise protocols are crucial because the system is extremely user sensitive and results can be easily biased if standardized methods are not applied. The suggested protocol takes 1.5-3.5 h per sample, depending on bone tissue sample size, the type of equipment used, variables of the scanning protocol and the operator's experience.  相似文献   
59.
During and after transendothelial migration, neutrophils undergo a number of phenotypic changes resulting from encounters with endothelium-derived factors. This report uses an in vitro model with human umbilical vein endothelial cells and isolated human neutrophils to examine the effects of two locally derived cytokines, granulocyte (G)-macrophage (M) colony-stimulating factor (GM-CSF) and G-CSF, on oncostatin M (OSM) expression. Neutrophils contacting activated HUVEC expressed and released increased amounts of oncostatin M (OSM), a proinflammatory cytokine known to induce polymorphonuclear neutrophil adhesion and chemotaxis. Neutrophil transendothelial migration resulted in threefold higher OSM expression and protein levels compared with nontransmigrated cells. Addition of anti-GM-CSF neutralizing antibody reduced OSM expression level but anti-G-CSF was without effect. GM-CSF but not G-CSF protein addition to cultures of isolated neutrophils resulted in a significant increase in OSM protein secretion. However, inhibition of β(2) integrins by neutralizing antibody significantly reduced GM-CSF-induced OSM production indicating this phenomenon is adhesion dependent. Thus cytokine-stimulated endothelial cells can produce sufficient quantities of GM-CSF to influence in an adhesion-dependent manner, the phenotypic characteristics of neutrophils resulting in the latter's transmigration. Both transmigration and adhesion phenomenon lead to increased production of OSM by neutrophils that then play a major role in inflammatory response.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号