首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   7篇
  100篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
41.
42.
The early adaptive evolution of calmodulin   总被引:7,自引:0,他引:7  
Interaction between gene duplication and natural selection in molecular evolution was investigated utilizing a phylogenetic tree constructed by the parsimony procedure from amino acid sequences of 50 calmodulin- family protein members. The 50 sequences, belonging to seven protein lineages related by gene duplication (calmodulin itself, troponin-C, alkali and regulatory light chains of myosin, parvalbumin, intestinal calcium-binding protein, and glial S-100 phenylalanine-rich protein), came from a wide range of eukaryotic taxa and yielded a denser tree (more branch points within each lineage) than in earlier studies. Evidence obtained from the reconstructed pattern of base substitutions and deletions in these ancestral loci suggests that, during the early history of the family, selection acted as a transforming force on expressed genes among the duplicates to encode molecular sites with new or modified functions. In later stages of descent, however, selection was a conserving force that preserved the structures of many coadapted functional sites. Each branch of the family was found to have a unique average tempo of evolutionary change, apparently regulated through functional constraints. Proteins whose functions dictate multiple interaction with several other macromolecules evolved more slowly than those which display fewer protein-protein and protein-ion interactions, e.g., calmodulin and next troponin-C evolved at the slowest average rates, whereas parvalbumin evolved at the fastest. The history of all lineages, however, appears to be characterized by rapid rates of evolutionary change in earlier periods, followed by slower rates in more recent periods. A particularly sharp contrast between such fast and slow rates is found in the evolution of calmodulin, whose rate of change in earlier eukaryotes was manyfold faster than the average rate over the past 1 billion years. In fact, the amino acid replacements in the nascent calmodulin lineage occurred at residue positions that in extant metazoans are largely invariable, lending further support to the Darwinian hypothesis that natural selection is both a creative and a conserving force in molecular evolution.   相似文献   
43.

Background

Alzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.

Results

We apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies.

Conclusions

The data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.  相似文献   
44.
45.
46.
47.
48.
Proteolytic enzymes have been used both to modify properties of the cell membrane and to dissociate cells from many tissues including pituitary (4, 5, 12). Exposure of secretory tissues to pronase can alter their secretory response. Thus incubation of pancreatic islets of Langerhans in the presence of low concentrations of pronase increased the subsequent release of insulin in the presence of stimulatory and nonstimulatory glucose concentrations (7). The purpose of the present investigation was to determine whether low concentrations of pronase have the same stimulatory effect on the release of a pituitary hormone, growth hormone. Such an effect on hormone release could be of some importance in view of the development of dissociated cell systems as models for the study of the control of hormone release (4, 5).  相似文献   
49.

Background

Men are at an increased risk of dying from heart failure caused by inflammatory heart diseases such as atherosclerosis, myocarditis and dilated cardiomyopathy (DCM). We previously showed that macrophages in the spleen are phenotypically distinct in male compared to female mice at 12 h after infection. This innate immune profile mirrors and predicts the cardiac immune response during acute myocarditis.

Methods

In order to study sex differences in the innate immune response, five male and female BALB/c mice were infected intraperitoneally with coxsackievirus B3 (CVB3) or phosphate buffered saline and their spleens were harvested 12 h later for microarray analysis. Gene expression was determined using an Affymetrix Mouse Gene 1.0 ST Array. Significant gene changes were verified by quantitative real-time polymerase chain reaction or ELISA.

Results

During the innate immune response to CVB3 infection, infected males had higher splenic expression of genes which are important in regulating the influx of cholesterol into macrophages, such as phospholipase A2 (PLA2) and the macrophage scavenger receptor compared to the infected females. We also observed a higher expression in infected males compared to infected females of squalene synthase, an enzyme used to generate cholesterol within cells, and Cyp2e1, an enzyme important in metabolizing cholesterol and steroids. Infected males also had decreased levels of the translocator protein 18 kDa (TSPO), which binds PLA2 and is the rate-limiting step for steroidogenesis, as well as decreased expression of the androgen receptor (AR), which indicates receptor activation. Gene differences were not due to increased viral replication, which was unaltered between sexes.

Conclusions

We found that, compared to females, male mice had a greater splenic expression of genes which are important for cholesterol metabolism and activation of the AR at 12 h after infection. Activation of the AR has been linked to increased cardiac hypertrophy, atherosclerosis, myocarditis/DCM and heart failure in male mice and humans.  相似文献   
50.
BACKGROUND: The reduced folate carrier (RFC1) is a ubiquitously expressed integral membrane protein that mediates delivery of 5‐methyltetrahydrofolate into mammalian cells. In this study, embryonic/fetal development is characterized in an RFC1 knockout mouse model in which pregnant dams receive different levels of folate supplementation. METHODS: RFC1+/? males were mated to RFC1+/? females, and pregnant dams were treated with vehicle (control) or folic acid (25 or 50 mg/kg) by daily subcutaneous injection (0.1 mL/10 g bwt), beginning on E0.5 and continuing throughout gestation until the time of sacrifice. RESULTS: Without maternal folate supplementation, RFC1 nullizygous embryos die shortly postimplantation. Supplementation of pregnant dams with 25 mg/kg/day folic acid prolongs survival of mutant embryos until E9.5–E10.5, but they are developmentally delayed relative to wild‐type littermates, display a marked absence of erythropoiesis, severe neural tube and limb bud defects, and failure of chorioallantoic fusion. Fgfr2 protein levels are significantly reduced or absent in the extraembryonic membranes of RFC1 nullizygous embryos. Maternal folate supplementation with 50 mg/kg/day results in survival of 22% of RFC1 mutants to E18.5, but they develop with multiple malformations of the eyelids, lungs, heart, and skin. CONCLUSIONS: High doses of daily maternal folate supplementation during embryonic/fetal development are necessary for early postimplantation embryonic viability of RFC1 nullizygous embryos, and play a critical role in chorioallantoic fusion, erythropoiesis, and proper development of the neural tube, limbs, lungs, heart, and skin. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号