首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   26篇
  401篇
  2024年   3篇
  2023年   3篇
  2022年   12篇
  2021年   15篇
  2020年   13篇
  2019年   12篇
  2018年   11篇
  2017年   10篇
  2016年   22篇
  2015年   21篇
  2014年   27篇
  2013年   30篇
  2012年   33篇
  2011年   29篇
  2010年   14篇
  2009年   10篇
  2008年   24篇
  2007年   25篇
  2006年   16篇
  2005年   13篇
  2004年   11篇
  2003年   13篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   2篇
  1981年   3篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有401条查询结果,搜索用时 15 毫秒
101.
102.
103.
Introducing lpr mutation prevents early mortality associated with IL-2Ralpha knockout (KO) mice, prompting us to determine the role of Fas in the immune system biology of IL-2Ralpha KO mice. Consistent with a defect in CD4+CD25+ regulatory T (Treg) cell expression, spontaneous lymphocyte activation in lymphoid organs was observed in 6-wk-old mice. In 16- to 22-wk-old mice, infiltration of leukocytes was observed in bone marrow, colon, lung, pancreas, lacrimal gland, and salivary gland, but not in heart, thyroid, liver, stomach, small intestine, ovary, and kidney. In the lymphocytes-infiltrated bone marrow, B cell lymphopoiesis was blocked at pro-B to pre-B/immature B stage, culminating in an age-dependent B cell loss in the periphery. These phenotypes were also observed in IL-2Ralpha KO mice bearing the lpr mutation (DM mice), indicating Treg cell function and the phenotypes attributed directly to Treg cell abnormality are largely Fas-independent. However, anemia and body weight loss were partially prevented, tissue cell apoptosis was inhibited, and lifespan was improved in the DM mice, demonstrating Fas-dependent elements in these processes. Our age-dependent, lifelong analysis of IL-2Ralpha KO and DM mice supports a CD4+CD25+ Treg cell-based mechanism for the abnormal immune system biology observed in IL-2Ralpha KO mice and provides a global view of the interplays among Treg cells, multiorgan inflammation, hemopoiesis, and apoptosis.  相似文献   
104.
Five bombesin analogs with different functional groups at the C-terminus were synthesized using a solid-phase strategy. The protocols were optimized using 4-(hydroxymethyl)benzoic acid (HMBA) resin to synthesize a common precursor followed by nucleophilic cleavage of the base sensitive peptide ester linkage. The C-terminal modifications included ethylamide, butylamide, methyl ester, propyl ester and hydrazide. Cleavage from the resin was possible with the fully protected or deprotected precursor peptide; however, higher purity of the final products was achieved when cleavage protocols were conducted after side-chain deprotection. The synthesized peptides were analyzed and characterized using reverse phase HPLC and ESI-MS. The peptides were obtained in 13-32% overall recovery, calculated from the coupling efficiency of the first amino acid residue, and in 91-97% purity.  相似文献   
105.
106.
107.
Phenylacetate-CoA ligase (E.C. 6.2.1.30), the initial enzyme in the metabolism of phenylacetate, was studied in Thermus thermophilus strain HB27. Enzymatic activity was upregulated during growth on phenylacetate or phenylalanine. The phenylacetate-CoA ligase gene (paaK) was cloned and heterologously expressed in Escherichia coli and the recombinant protein was purified. The enzyme catalyzed phenylacetate + CoA + MgATP --> phenylacetyl-CoA + AMP + MgPP(i) with a V(max) of 24 micromol/min/mg protein at a temperature optimum of 75 degrees C. The apparent K(m) values for ATP, CoA, and phenylacetate were 6, 30, and 50 microM: , respectively. The protein was highly specific toward phenylacetate and showed only low activity with 4-hydroxyphenylacetate. Despite an amino acid sequence identity of >50% with its mesophilic homologues, phenylacetate-CoA ligase was heat stable. The genome contained further homologues of genes, which are postulated to be involved in the CoA ester-dependent metabolic pathway of phenylacetate (hybrid pathway). Enzymes of this thermophile are expected to be robust and might be useful for further studies of this yet unresolved pathway.  相似文献   
108.
109.
Aerobic metabolism of phenylalanine in most bacteria proceeds via oxidation to phenylacetate. Surprisingly, the further metabolism of phenylacetate has not been elucidated, even in well studied bacteria such as Escherichia coli. The only committed step is the conversion of phenylacetate into phenylacetyl-CoA. The paa operon of E. coli encodes 14 polypeptides involved in the catabolism of phenylacetate. We have found that E. coli K12 mutants with a deletion of the paaF, paaG, paaH, paaJ or paaZ gene are unable to grow with phenylacetate as carbon source. Incubation of a paaG mutant with [U-13C8]phenylacetate yielded ring-1,2-dihydroxy-1,2-dihydrophenylacetyl lactone as shown by NMR spectroscopy. Incubation of the paaF and paaH mutants with phenylacetate yielded delta3-dehydroadipate and 3-hydroxyadipate, respectively. The origin of the carbon atoms of these C6 compounds from the aromatic ring was shown using [ring-13C6]phenylacetate. The paaG and paaZ mutants also converted phenylacetate into ortho-hydroxyphenylacetate, which was previously identified as a dead end product of phenylacetate catabolism. These data, in conjunction with protein sequence data, suggest a novel catabolic pathway via CoA thioesters. According to this, phenylacetyl-CoA is attacked by a ring-oxygenase/reductase (PaaABCDE proteins), generating a hydroxylated and reduced derivative of phenylacetyl-CoA, which is not re-oxidized to a dihydroxylated aromatic intermediate, as in other known aromatic pathways. Rather, it is proposed that this nonaromatic intermediate CoA ester is further metabolized in a complex reaction sequence comprising enoyl-CoA isomerization/hydration, nonoxygenolytic ring opening, and dehydrogenation catalyzed by the PaaG and PaaZ proteins. The subsequent beta-oxidation-type degradation of the resulting CoA dicarboxylate via beta-ketoadipyl-CoA to succinyl-CoA and acetyl-CoA appears to be catalyzed by the PaaJ, PaaF and PaaH proteins.  相似文献   
110.
Epidemiological studies have shown an inverse association between dietary intake of lycopene and prostate cancer risk. We conducted a clinical trial to investigate the biological and clinical effects of lycopene supplementation in patients with localized prostate cancer. Twenty-six men with newly diagnosed prostate cancer were randomly assigned to receive a tomato oleoresin extract containing 30 mg of lycopene (n = 15) or no supplementation (n = 11) for 3 weeks before radical prostatectomy. Biomarkers of cell proliferation and apoptosis were assessed by Western blot analysis in benign and cancerous prostate tissues. Oxidative stress was assessed by measuring the peripheral blood lymphocyte DNA oxidation product 5-hydroxymethyl-deoxyuridine (5-OH-mdU). Usual dietary intake of nutrients was assessed by a food frequency questionnaire at baseline. Prostatectomy specimens were evaluated for pathologic stage, Gleason score, volume of cancer, and extent of high-grade prostatic intraepithelial neoplasia. Plasma levels of lycopene, insulin-like growth factor-1, insulin-like growth factor binding protein-3, and prostate-specific antigen were measured at baseline and after 3 weeks of supplementation or observation. After intervention, subjects in the intervention group had smaller tumors (80% vs 45%, less than 4 ml), less involvement of surgical margins and/or extra-prostatic tissues with cancer (73% vs 18%, organ-confined disease), and less diffuse involvement of the prostate by high-grade prostatic intraepithelial neoplasia (33% vs 0%, focal involvement) compared with subjects in the control group. Mean plasma prostate-specific antigen levels were lower in the intervention group compared with the control group. This pilot study suggests that lycopene may have beneficial effects in prostate cancer. Larger clinical trials are warranted to investigate the potential preventive and/or therapeutic role of lycopene in prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号