首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   42篇
  2022年   3篇
  2019年   6篇
  2017年   3篇
  2015年   11篇
  2014年   9篇
  2013年   12篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   13篇
  2007年   10篇
  2006年   12篇
  2005年   8篇
  2004年   14篇
  2003年   9篇
  2002年   6篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   14篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1979年   5篇
  1977年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
  1961年   1篇
  1955年   1篇
  1954年   1篇
  1953年   1篇
  1943年   1篇
  1940年   1篇
  1936年   1篇
  1932年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
51.
A novel, bis-indolylmaleimide, Ro 31-8425, bearing a conformationally restricted side chain, inhibits protein kinase C isolated from rat brain and human neutrophils with a high degree of selectivity over cAMP-dependent kinase and Ca2+/calmodulin-dependent kinase. It also inhibits phorbol ester-induced intracellular events known to be mediated by protein kinase C (p47 phosphorylation in intact platelets, CD3 and CD4 down-regulation in T-cells). Ro 31-8425 inhibited superoxide generation in human neutrophils activated by both receptor stimuli (formyl-methionyl-leucylphenylalanine, opsonized zymosan, IgG and heat aggregated IgG) and post-receptor stimuli (1,2-dioctanoylglycerol and fluoride). The compound also blocked antigen driven, but not IL-2 induced, T-cell proliferation. These results support a central role for protein kinase C in the activation of the respiratory burst and antigen-driven T-cell proliferation.  相似文献   
52.
53.
The plant aspartate aminotransferase gene family   总被引:4,自引:0,他引:4  
  相似文献   
54.
55.
The recognition that variant Creutzfeldt-Jakob disease (vCJD) is caused by the same prion strain as bovine spongiform encephalopathy in cattle has dramatically highlighted the need for a precise understanding of the molecular biology of human prion diseases. Detailed clinical, pathological and molecular data from a large number of human prion disease patients indicate that phenotypic diversity in human prion disease relates in part to the propagation of disease-related PrP isoforms with distinct physicochemical properties. Incubation periods of prion infection in humans can exceed 50 years and therefore it will be some years before the extent of any human vCJD epidemic can be predicted with confidence.  相似文献   
56.
The occurrence of new variant Creutzfeldt-Jakob disease and the experimental confirmation that it is caused by the same prion strain as BSE has dramatically highlighted the need for a precise understanding of the molecular basis of prion propagation. The molecular basis of prion-strain diversity, previously a major challenge to the protein-only model, is now becoming clearer. The conformational change thought to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta-structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. These and other advances in the fundamental biology of prion propagation are leading to prion diseases becoming arguably the best understood of the neurodegenerative conditions and strategies for the development of rational therapeutics are becoming clearer.  相似文献   
57.
A series of small molecule orally bioavailable ghrelin receptor agonists have been identified through systematic optimisation of a high throughput screening hit.  相似文献   
58.
Estimating detailed transmission trees that reflect the relationships between infected individuals or populations during a disease outbreak often provides valuable insights into both the nature of disease transmission and the overall dynamics of the underlying epidemiological process. These trees may be based on epidemiological data that relate to the timing of infection and infectiousness, or genetic data that show the genetic relatedness of pathogens isolated from infected individuals. Genetic data are becoming increasingly important in the estimation of transmission trees of viral pathogens due to their inherently high mutation rate. Here, we propose a maximum-likelihood approach that allows epidemiological and genetic data to be combined within the same analysis to infer probable transmission trees. We apply this approach to data from 20 farms infected during the 2001 UK foot-and-mouth disease outbreak, using complete viral genome sequences from each infected farm and information on when farms were first estimated to have developed clinical disease and when livestock on these farms were culled. Incorporating known infection links due to animal movement prior to imposition of the national movement ban results in the reduction of the number of trees from 41472 that are consistent with the genetic data to 1728, of which just 4 represent more than 95% of the total likelihood calculated using a model that accounts for the epidemiological data. These trees differ in several ways from those constructed prior to the availability of genetic data.  相似文献   
59.
While the neuropathology of kuru is well defined, there are few data concerning the distribution of disease-related prion protein in peripheral tissues. Here we report the investigation of brain and peripheral tissues from a kuru patient who died in 2003. Neuropathological findings were compared with those seen in classical (sporadic and iatrogenic) Creutzfeldt-Jakob disease (CJD) and variant CJD (vCJD). The neuropathological findings of the kuru patient showed all the stereotypical changes that define kuru, with the occurrence of prominent PrP plaques throughout the brain. Lymphoreticular tissue showed no evidence of prion colonization, suggesting that the peripheral pathogenesis of kuru is similar to that seen in classical CJD rather than vCJD. These findings now strongly suggest that the characteristic peripheral pathogenesis of vCJD is determined by prion strain type alone rather than route of infection.  相似文献   
60.
The polarization of post-mitotic neurons is poorly understood. Preexisting spatially asymmetric cues, distributed within the neuron or as extracellular gradients, could be required for neurons to polarize. Alternatively, neurons might have the intrinsic ability to polarize without any preestablished asymmetric cues. In Caenorhabditis elegans, the UNC-40 (DCC) receptor mediates responses to the extracellular UNC-6 (netrin) guidance cue. For the HSN neuron, an UNC-6 ventral-dorsal gradient asymmetrically localizes UNC-40 to the ventral HSN surface. There an axon forms, which is ventrally directed by UNC-6. In the absence of UNC-6, UNC-40 is equally distributed and the HSN axon travels anteriorly in response to other cues. However, we find that a single amino acid change in the UNC-40 ectodomain causes randomly oriented asymmetric UNC-40 localization and a wandering axon phenotype. With UNC-6, there is normal UNC-40 localization and axon migration. A single UNC-6 amino acid substitution enhances the mutant phenotypes, whereas UNC-6 second-site amino acid substitutions suppress the phenotypes. We propose that UNC-40 mediates multiple signals to polarize and orient asymmetry. One signal triggers the intrinsic ability of HSN to polarize and causes randomly oriented asymmetry. Concurrently, another signal biases the orientation of the asymmetry relative to the UNC-6 gradient. The UNC-40 ectodomain mutation activates the polarization signal, whereas different forms of the UNC-6 ligand produce UNC-40 conformational changes that allow or prohibit the orientation signal.A major challenge for developmental neuroscience has been to understand how axons are able to detect and follow molecular gradients of different extracellular guidance cues. Attractive guidance cues are proposed to stimulate cytoplasmic signaling pathways that promote actin polymerization (Huber et al. 2003). Thus the direction of axon outgrowth is directly linked to the extracellular gradient of the guidance cue; i.e., there is greater extension on the side of the neuron that is closest to the source of the cue. Netrins are bifunctional guidance cues that are attractive to some axons but repulsive to others. Studies have shown that the axon response to netrin is determined by the composition of netrin receptors on the cell surface and the internal state of the growth cone (Round and Stein 2007). The UNC-6 (netrin) guidance cue in Caenorhabditis elegans interacts with the UNC-40 (DCC) receptor to mediate attraction (Hedgecock et al. 1990; Ishii et al. 1992; Chan et al. 1996). The AVM and HSN neurons are useful for studying UNC-40-mediated responses to UNC-6. The cell bodies of these neurons are situated on the lateral body wall and send a single axon ventrally during larval development.In AVM and HSN, a signaling module comprising UNC-6, UNC-40, phosphoinositide 3-kinase (PI3K), Rac, and MIG-10 (lamellipodin) is thought to transmit the directional information provided by the graded distribution of extracellular guidance cues to the internal cellular machinery that promotes directed outgrowth (Adler et al. 2006; Chang et al. 2006; Quinn et al. 2006, 2008). MIG-10 appears to provide an important link because this family of proteins can interact with proteins that promote actin polymerization, and it is associated with asymmetric concentrations of f-actin and microtubules in turning growth cones (Krause et al. 2004; Quinn et al. 2008). MIG-10 is observed as asymmetrically localized to the ventral site of axon outgrowth in developing HSN neurons. This MIG-10 localization is sensitive to the source of UNC-6. Normally, the source of UNC-6 is ventral; in the absence of UNC-6, there is an equal distribution of MIG-10 along the cell surface, whereas ectopic UNC-6 expression from dorsal muscles causes dorsal MIG-10 localization (Adler et al. 2006). The UNC-40 receptor is also asymmetrically localized in HSN, and this localization is also dependent on UNC-6 (Adler et al. 2006). UNC-40 signaling activates Rac GTPase, and MIG-10 interacts specifically with the activated Rac (Quinn et al. 2008). Therefore, the asymmetric activation of Rac through UNC-40 recruits asymmetric MIG-10 localization.By activating or directing components to the surface nearest the UNC-6 source, the asymmetric distribution of UNC-6 could polarize the neuron. However, an alternative idea is suggested from studies of chemotaxing cells. This model predicts that chemoattractant signaling involves two different elements: one that activates the intrinsic ability of cells to generate asymmetry and another that biases the orientation of the asymmetry (Wedlich-Soldner and Li 2003). The polarization signal does not depend on the spatial information provided by the chemoattractant gradient, whereas the orientation signal does. The asymmetric localization of the UNC-40 and MIG-10 signaling complex is suggestive of the segregation of signaling components into separate “front” and “rear” regions during chemotactic cell migration (Weiner 2002; Mortimer et al. 2008). It is hypothesized that this segregation is accomplished through short-range positive feedback mechanisms that promote the local production or recruitment of signaling molecules. In addition, a long-range inhibition mechanism globally increases the degradation of these molecules. Together such mechanisms could strongly amplify the asymmetric distribution of molecules needed for directed movement. This model has been put forth to explain why chemotactic cells polarize and move in a random direction when encountering a uniform chemoattractant concentration. Although the chemoattractant receptors may be uniformly stimulated across the surface of the cells, randomly oriented asymmetry can be established through these mechanisms.If the AVM and HSN neurons behave similarly to chemotactic cells, then uniformly stimulating UNC-40 receptors might similarly cause nonspecific asymmetric UNC-40 localization and axon migrations in varying directions. However, this is difficult to test in vivo. Unlike exposing chemotactic cells to a uniform concentration of a chemotractant in vitro, there is no reliable way to ensure that a neuron in vivo is exposed to a uniform concentration of UNC-6. The pseudocoelomic cavity of C. elegans is fluid filled, and UNC-6 expression patterns are spatially and temporally complex (Wadsworth et al. 1996). How the distribution of UNC-6 is affected by interactions with the extracellular matrix and cell surfaces is unknown.Using a genetic approach, we have found an UNC-40 mutation that triggers randomly oriented neuronal asymmetry. On the basis of the models proposed for chemotactic cells, we suggest that there is an UNC-6/UNC-40-mediated signal that specifically induces the neuron''s intrinsic ability to polarize. The UNC-40 mutation activates this signal; however, a second signal, which normally would concurrently orient asymmetry relative to the UNC-6 gradient, is not activated. Single amino acid changes within the UNC-6 ligand can enhance or suppress the randomly oriented asymmetry phenotype caused by the UNC-40 mutation. This suggests that specific UNC-40 conformations uncouple the activation of the different signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号