首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   6篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1969年   2篇
排序方式: 共有61条查询结果,搜索用时 265 毫秒
41.
The structure and alignment of the amphipathic alpha-helical antimicrobial peptide PGLa in a lipid membrane is determined with high accuracy by solid-state 2H-NMR. Orientational constraints are derived from a series of eight alanine-3,3,3-d3-labeled peptides, in which either a native alanine is nonperturbingly labeled (4x), or a glycine (2x) or isoleucine (2x) is selectively replaced. The concentration dependent realignment of the alpha-helix from the surface-bound "S-state" to a tilted "T-state" by 30 degrees is precisely calculated using the quadrupole splittings of the four nonperturbing labels as constraints. The remaining, potentially perturbing alanine-3,3,3-d3 labels show only minor deviations from the unperturbed peptide structure and help to single out the unique solution. Comparison with previous 19F-NMR constraints from 4-CF3-phenylglycine labels shows that the structure and orientation of the PGLa peptide is not much disturbed even by these bulky nonnatural side chains, which contain CF3 groups that offer a 20-fold better NMR sensitivity than CD3 groups.  相似文献   
42.
43.
The anticancer drug cisplatin is nephrotoxic and neurotoxic. Previous data support the hypothesis that cisplatin is bioactivated to a nephrotoxicant. The final step in the proposed bioactivation is the formation of a platinum-cysteine S-conjugate followed by a pyridoxal 5'-phosphate (PLP)-dependent cysteine S-conjugate beta-lyase reaction. This reaction would generate pyruvate, ammonium, and a highly reactive platinum (Pt)-thiol compound in vivo that would bind to proteins. In this work, the cellular location and identity of the PLP-dependent cysteine S-conjugate beta-lyase were investigated. Pt was shown to bind to proteins in kidneys of cisplatin-treated mice. The concentration of Pt-bound proteins was higher in the mitochondrial fraction than in the cytosolic fraction. Treatment of the mice with aminooxyacetic acid (AOAA, a PLP enzyme inhibitor), which had previously been shown to block the nephrotoxicity of cisplatin, decreased the binding of Pt to mitochondrial proteins but had no effect on the amount of Pt bound to proteins in the cytosolic fraction. These data indicate that a mitochondrial enzyme catalyzes the PLP-dependent cysteine S-conjugate beta-lyase reaction. PLP-dependent mitochondrial aspartate aminotransferase (mitAspAT) is a mitochondrial enzyme that catalyzes beta-elimination reactions with cysteine S-conjugates of halogenated alkenes. We reasoned that the enzyme might also catalyze a beta-lyase reaction with the cisplatin-cysteine S-conjugate. In this study, mitAspAT was stably overexpressed in LLC-PK(1) cells. Cisplatin was significantly more toxic in confluent monolayers of LLC-PK(1) cells that overexpressed mitAspAT than in control cells containing vector alone. AOAA completely blocked the cisplatin toxicity in confluent mitAspAT-transfected cells. The Pt-thiol compound could rapidly bind proteins and inactivate enzymes in close proximity of the PLP-dependent cysteine S-conjugate beta-lyase. Treatment with 50 or 100 microM cisplatin for 3 h, followed by removal of cisplatin from the medium for 24 h, resulted in a pronounced loss of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity in both mitAspAT-transfected cells and control cells. Exposure to 100 microM cisplatin resulted in a significantly greater loss of KGDHC activity in the cells overexpressing mitAspAT than in control cells. Aconitase activity was diminished in both cell types, but only at the higher level of exposure to cisplatin. AspAT activity was also significantly decreased by cisplatin treatment. By contrast, several other enzymes (both cytosolic and mitochondrial) involved in energy/amino acid metabolism were not significantly affected by cisplatin treatment in the LLC-PK(1) cells, whether or not mitAspAT was overexpressed. The susceptibility of KGDHC and aconitase to inactivation in kidney cells exposed to cisplatin metabolites may be due to the proximity of mitAspAT to KGDHC and aconitase in mitochondria. These findings support the hypothesis that a mitochondrial cysteine S-conjugate beta-lyase converts the cisplatin-cysteine S-conjugate to a toxicant, and the data are consistent with the hypothesis that mitAspAT plays a role in the bioactivation of cisplatin.  相似文献   
44.
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state 19F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF3-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these 19F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far.  相似文献   
45.
Two series of carbazole analogs of 8‐methoxy‐N‐substituted‐9H‐carbazole‐3‐carboxamides (series 1) and carbazolyl substituted rhodanines (series 2) were synthesized through facile synthetic routes. All the final compounds from these two series were evaluated for their preliminary in vitro antifungal and antibacterial activity against four fungal (Candida albicans, Cryptococcus neoformans, Cryptococcus tropicalis and Aspergillus niger) and four bacterial (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa) strains, respectively. Among the tested compounds, three compounds of series 1 displayed promising antifungal and antibacterial activity, especially against C. neoformans and S. aureus. In addition, one compound of series 1 displayed notable antimicrobial activity (MIC: 6.25 μg/mL) against clinical isolates of C. albicans and C. neoformans (MIC: 12.5 μg/mL). From the second series, four compounds exhibited significant antifungal and antibacterial activity, especially against C. neoformans and S. aureus. The most active compound of series 2 displayed a prominent antimicrobial activity against C. neoformans (MIC: 3.125 μg/mL) and S. aureus (MIC: 1.56 μg/mL), respectively.  相似文献   
46.
Adequate supply of LCPUFA from maternal plasma is crucial for fetal normal growth and development. The present study examines the effect of maternal micronutrients (folic acid and vitamin B12) and omega 3 fatty acids on placental mRNA levels of fatty acid desaturases (Δ5 and Δ6) and transport proteins. Pregnant female rats were divided into 6 groups at 2 levels of folic acid both in the presence and absence of vitamin B12. Both the vitamin B12 deficient groups were supplemented with omega 3 fatty acid. Maternal vitamin B12 deficiency reduced placental mRNA and protein levels of Δ5 desaturase, mRNA levels of FATP1 and FATP4 (p<0.05 for all) as compared to control while omega 3 fatty acid supplementation normalized the levels. Our data for the first time indicates that altered maternal micronutrients and omega 3 fatty acids play a key role in regulating fatty acid desaturase and transport protein expression in placenta.  相似文献   
47.
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of adenosine monophosphate-activated protein kinases, directly associated with cancer and neurodegenerative diseases. Here, we have cloned, expressed, and purified two variants of MARK4 [the kinase domain (MARK4-F2), and kinase domain along with 59 N-terminal residues (MARK4-F1)] and compared their stability at varying pH range. Structural and functional changes were observed by incubating both forms of MARK4 in buffers of different pH. We measured the secondary structure of MARK4 using circular dichroism and tertiary structure by measuring intrinsic fluorescence and absorbance properties along with the size of proteins by dynamic light scattering. We observed that at extremes of pH (below pH 3.5 and above pH 9.0), MARK4 is quite stable. However, a remarkable aggregate formation was observed at intermediate pH (between pH 3.5 and 9.0). To further validate this result, we have modeled both forms of MARK4 and performed molecular dynamics simulation for 15 ns. The spectroscopic observations are in excellent agreement with the findings of molecular dynamics simulation. We also performed ATPase activity at varying pH and found a significant correlation of structure of MARK4 with its enzyme activity. It is interesting to note that both forms of MARK4 are showing a similar pattern of structure changes with reference to pH.  相似文献   
48.
49.
The amphiphilic alpha-helical peptide (KIAGKIA)3-NH2 (MSI-103) is a designer-made antibiotic, based on the natural sequence of PGLa from Xenopus laevis. Here, we have characterized the concentration-dependent alignment and dynamic behavior of MSI-103 in lipid membranes by solid-state 2H and 19F NMR, using orientational constraints from seven Ala-d3-labeled analogues and five 4-CF3-phenylglycine labels. As previously found for PGLa, MSI-103, too, assumes a flat surface-bound S-state alignment at low peptide concentrations, and it also realigns to a tilted T-state at higher concentrations. For PGLa, the stability of the T-state had been attributed to the specific assembly of antiparallel dimers; hence, it is remarkable that the artificial KIAGKIA repeat sequence can also dimerize in the same way in liquid crystalline lipid bilayers. Oriented circular dichroism analysis shows that for MSI-103 the threshold for realignment from the S-state to the T-state is approximately 3-fold lower than for PGLa (at a peptide-to-lipid ratio of 1:240 in dimyristoylphosphatidylcholine, compared to 1:80). Furthermore, MSI-103 becomes laterally immobilized in the lipid bilayer at a concentration ratio of 1:50, which occurs for PGLa only above 1:20. The superior antimicrobial activity of MSI-103 over PGLa thus appears to correlate with its stronger tendency to realign and self-assemble. The hemolytic activities of MSI-103 and its analogues, on the other hand, are shown here to correlate purely with the respective changes in hydrophobicity.  相似文献   
50.
Oriented circular dichroism (OCD) was used to characterize and compare in a quantitative manner the secondary structure and concentration dependent realignment of the antimicrobial peptides PGLa and MSI-103, and of the structurally related cell-penetrating peptide MAP in aligned phospholipid bilayers. All these peptides adopt an amphiphilic α-helical conformation, and from solid-state NMR analysis they are known to bind to membranes in two distinct orientations depending on their concentration. At low peptide/lipid (P/L) ratio the helices are aligned parallel to membrane surface (S-state), but with increasing concentration they realign to a tilted orientation (T-state), getting immersed into the membrane with an oblique angle supposedly as a result of dimer-formation. In macroscopically aligned liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers the two limiting states are represented by distinct OCD spectra, and all spectra at intermediate peptide concentrations can be described by a linear combination of these two line shapes. The corresponding fraction of molecules occupying the T-state was determined by fitting the intermediate spectra with a superposition of the two extreme line shapes. By plotting this fraction versus 1/(P/L), the threshold P/L* ratio for realignment was extracted for each of the three related peptides. Despite their structural similarity distinctly different thresholds were obtained, namely for MSI-103 realignment starts already at a low P/L of ∼1:236, for a MAP derivative (using a nonaggregating analog containing a D-amino acid) the transition begins at P/L ∼1:156, whereas PGLa needs the highest concentration to flip into T-state at P/L ∼1:85. Analysis of the original MAP sequence (containing only L-amino acids) gave OCD spectra compatible with β-pleated conformation, suggesting that this peptide starts to aggregate with increasing concentration, unlike the other helical peptides. All these changes in peptide conformation and membrane alignment observed here by OCD seem to be functionally relevant, as they can be correlated with the membrane perturbing activities of the three antimicrobial and cell-penetrating sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号