首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2948篇
  免费   231篇
  2023年   16篇
  2022年   28篇
  2021年   56篇
  2020年   34篇
  2019年   39篇
  2018年   60篇
  2017年   49篇
  2016年   73篇
  2015年   175篇
  2014年   170篇
  2013年   217篇
  2012年   271篇
  2011年   246篇
  2010年   149篇
  2009年   121篇
  2008年   196篇
  2007年   178篇
  2006年   175篇
  2005年   151篇
  2004年   140篇
  2003年   112篇
  2002年   115篇
  2001年   32篇
  2000年   30篇
  1999年   33篇
  1998年   42篇
  1997年   20篇
  1996年   18篇
  1995年   19篇
  1994年   27篇
  1993年   20篇
  1992年   19篇
  1991年   18篇
  1990年   10篇
  1989年   21篇
  1988年   4篇
  1987年   16篇
  1986年   8篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1976年   3篇
  1964年   3篇
  1940年   2篇
  1912年   2篇
排序方式: 共有3179条查询结果,搜索用时 15 毫秒
941.
942.

Background

Synaptic degeneration is an early pathogenic event in Alzheimer’s disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples.

Results

We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer’s disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer’s disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer’s disease from controls with area under the curve of 0.901 (P?<?0.0001).

Conclusions

We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.
  相似文献   
943.
An important concern for the use of antibodies in various applications, such as western blot (WB) or immunohistochemistry (IHC), is specificity. This calls for systematic validations using well‐designed conditions. Here, we have analyzed 13 000 antibodies using western blot with lysates from human cell lines, tissues, and plasma. Standardized stratification showed that 45% of the antibodies yielded supportive staining, and the rest either no staining (12%) or protein bands of wrong size (43%). A comparative study of WB and IHC showed that the performance of antibodies is application‐specific, although a correlation between no WB staining and weak IHC staining could be seen. To investigate the influence of protein abundance on the apparent specificity of the antibody, new WB analyses were performed for 1369 genes that gave unsupportive WBs in the initial screening using cell lysates with overexpressed full‐length proteins. Then, more than 82% of the antibodies yielded a specific band corresponding to the full‐length protein. Hence, the vast majority of the antibodies (90%) used in this study specifically recognize the target protein when present at sufficiently high levels. This demonstrates the context‐ and application‐dependence of antibody validation and emphasizes that caution is needed when annotating binding reagents as specific or cross‐reactive. WB is one of the most commonly used methods for validation of antibodies. Our data implicate that solely using one platform for antibody validation might give misleading information and therefore at least one additional method should be used to verify the achieved data.  相似文献   
944.
945.
Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m5C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.  相似文献   
946.
We recently showed that a Rab protein, CPRabA5e (CP = chloroplast localized), is located in chloroplasts of Arabidopsis thaliana where it is involved in various processes, such as thylakoid biogenesis and vesicle transport. Using a yeast two-hybrid method, CPRabA5e was shown to interact with a number of chloroplast proteins, including the CURVATURE THYLAKOID 1A (CURT1A) protein and the light-harvesting chlorophyll a/b binding protein (LHCB1.5). CURT1A has recently been shown to modify thylakoid architecture by inducing membrane curvature in grana, whereas LHCB1.5 is a protein of PSII (Photosystem II) facilitating light capture. LHCB1.5 is imported to chloroplasts and transported to thylakoid membranes using the post-translational Signal Recognition Particle (SRP) pathway. With this information as starting point, we here discuss their subsequent protein-protein interactions, given by the literature and Interactome 3D. CURT1A itself and several of the proteins interacting with CURT1A and LHCB1.5 have relations to vesicle transport and thylakoid morphology, which are also characteristics of cprabA5e mutants. This highlights the previous hypothesis of an alternative thylakoid targeting pathway for LHC proteins using vesicles, in addition to the SRP pathway.  相似文献   
947.
948.
JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi–Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2–JH2 linker region participates in controlling activity by reducing the affinity for ATP.  相似文献   
949.

Background

Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses.

Methods

We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non-metastatic breast cancer from 1990–2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95% confidence intervals (95% CI) of BCR. We used random-effects meta-analytic models to evaluate the association of SOD2 polymorphisms and BCR.

Results

The frequency of the SOD2-Ala allele was 70% in cases versus 71% in controls; 40% versus 44% were heterozygotes, and 30% versus 25% were homozygotes, respectively. Heterozygote and homozygote carriers of the Ala allele had no increased rate of BCR (OR = 1.1, 95%CI = 0.65, 2.0, and OR = 0.87, 95%CI = 0.47, 1.6, respectively). Five studies informed the meta-analytic models; summary estimates associating BCR for homozygote, or any inheritance of the variant Ala allele were 1.18 (95%CI = 0.74, 1.88), and 1.18, (95%CI = 0.91, 1.54), respectively.

Conclusion

Our findings do not suggest that MnSOD enzymatic activity, as measured by SOD2 genotype, affects rates of BCR among patients treated with Cyclo.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号