首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   30篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   10篇
  2014年   7篇
  2013年   10篇
  2012年   14篇
  2011年   19篇
  2010年   10篇
  2009年   7篇
  2008年   19篇
  2007年   20篇
  2006年   12篇
  2005年   17篇
  2004年   5篇
  2003年   8篇
  2002年   13篇
  2001年   10篇
  2000年   12篇
  1999年   17篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   6篇
  1990年   11篇
  1989年   6篇
  1988年   13篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   2篇
  1982年   7篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1972年   6篇
  1971年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1958年   2篇
排序方式: 共有373条查询结果,搜索用时 46 毫秒
151.
Metastasis is a complex, multistep process involved in the progression of cancer from a localized primary tissue to distant sites, often characteristic of the more aggressive forms of this disease. Despite being studied in great detail in recent years, the mechanisms that govern this process remain poorly understood. In this study, we identify a novel role for miR-139-5p in the inhibition of breast cancer progression. We highlight its clinical relevance by reviewing miR-139-5p expression across a wide variety of breast cancer subtypes using in-house generated and online data sets to show that it is most frequently lost in invasive tumors. A biotin pull-down approach was then used to identify the mRNA targets of miR-139-5p in the breast cancer cell line MCF7. Functional enrichment analysis of the pulled-down targets showed significant enrichment of genes in pathways previously implicated in breast cancer metastasis (P < 0.05). Further bioinformatic analysis revealed a predicted disruption to the TGFβ, Wnt, Rho, and MAPK/PI3K signaling cascades, implying a potential role for miR-139-5p in regulating the ability of cells to invade and migrate. To corroborate this finding, using the MDA-MB-231 breast cancer cell line, we show that overexpression of miR-139-5p results in suppression of these cellular phenotypes. Furthermore, we validate the interaction between miR-139-5p and predicted targets involved in these pathways. Collectively, these results suggest a significant functional role for miR-139-5p in breast cancer cell motility and invasion and its potential to be used as a prognostic marker for the aggressive forms of breast cancer.  相似文献   
152.
MicroRNAs are noncoding regulators of gene expression, which act by repressing protein translation and/or degrading mRNA. Many have been shown to drive tumorigenesis in cancer, but functional studies to understand their mode of action are typically limited to single-target genes. In this study, we use synthetic biotinylated miRNA to pull down endogenous targets of miR-182-5p. We identified more than 1000 genes as potential targets of miR-182-5p, most of which have a known function in pathways underlying tumor biology. Specifically, functional enrichment analysis identified components of both the DNA damage response pathway and cell cycle to be highly represented in this target cohort. Experimental validation confirmed that miR-182-5p-mediated disruption of the homologous recombination (HR) pathway is a consequence of its ability to target multiple components in that pathway. Although there is a strong enrichment for the cell cycle ontology, we do not see primary proliferative defects as a consequence of miR-182-5p overexpression. We highlight targets that could be responsible for miR-182-5p-mediated disruption of other biological processes attributed in the literature so far. Finally, we show that miR-182-5p is highly expressed in a panel of human breast cancer samples, highlighting its role as a potential oncomir in breast cancer.  相似文献   
153.
Taste is an early stage in food and drink selection for most animals [1, 2]. Detecting sweetness indicates the presence of sugar and possible caloric content. However, sweet taste can be an unreliable predictor of nutrient value because some sugars cannot be metabolized. In addition, discrete sugars are detected by the same sensory neurons in the mammalian [3] and insect [4, 5] gustatory systems, making it difficult for animals to readily distinguish the identity of different sugars using taste alone [6-8]. Here we used an appetitive memory assay in Drosophila [9-11] to investigate the contribution of palatability and relative nutritional value of sugars to memory formation. We show that palatability and nutrient value both contribute to reinforcement of appetitive memory. Nonnutritious sugars formed less robust memory that could be augmented by supplementing with a tasteless but nutritious substance. Nutrient information is conveyed to the brain within minutes of training, when it can be used to guide expression of a sugar-preference memory. Therefore, flies can rapidly learn to discriminate between sugars using a postingestive reward evaluation system, and they preferentially remember nutritious sugars.  相似文献   
154.
155.
SJ-172550 (1) was previously discovered in a biochemical high throughput screen for inhibitors of the interaction of MDMX and p53 and characterized as a reversible inhibitor (J. Biol. Chem. 2010; 285:10786). Further study of the biochemical mode of action of 1 has shown that it acts through a complicated mechanism in which the compound forms a covalent but reversible complex with MDMX and locks MDMX into a conformation that is unable to bind p53. The relative stability of this complex is influenced by many factors including the reducing potential of the media, the presence of aggregates, and other factors that influence the conformational stability of the protein. This complex mechanism of action hinders the further development of compound 1 as a selective MDMX inhibitor.  相似文献   
156.
p27(Kip1) (p27), a prototypical intrinsically disordered protein (IDP), regulates eukaryotic cell division through interactions with cyclin-dependent kinase (Cdk)/cyclin complexes. The activity, stability, and subcellular localization of p27 are regulated by phosphorylation. We illustrate how p27 integrates regulatory signals from several non-receptor tyrosine kinases (NRTKs) to activate Cdk4 and initiate cell cycle entry. Unmodified p27 potently inhibits Cdk/cyclin complexes, including Cdk4/cyclin D (IC(50), 1 nM). Some NRTKs (e.g., Abl) phosphorylate p27 on Tyr 88, which facilitates a second modification on Tyr 74 by another NRTK (e.g., Src). Importantly, this second modification causes partial reactivation of Cdk4 within ternary complexes containing doubly Tyr phosphorylated p27. Partial activation of Cdk4 initiates entry into the cell division cycle. Therefore, p27's disordered features enable NRTKs to sequentially promote a phosphorylation cascade that controls cell fate. Beyond cell cycle control, these results illustrate general concepts regarding why IDPs are well-suited for roles in signaling and regulation in biological systems.  相似文献   
157.
158.
The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein,?either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF(FBW7) complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.  相似文献   
159.
160.
Sunlight or laboratory ultraviolet photolyses of oxalacetic, succinic, fumaric, malic and citric acids were carried out on 0.1 M aqueous solutions. The nonvolatile products were isolated and identified by GC-MS analysis of derived methyl esters. Several conversions corresponding to modern citric acid cycle reactions were observed. Notably, oxalacetic acid gave citric as the major product of sunlight photolysis. Other identified products relate to chemical evolution and further support the important role of succinic acid in the origin of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号