首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   6篇
  2021年   1篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
11.
Top signals from genome-wide association studies (GWASs) of type 2 diabetes (T2D) are enriched with expression quantitative trait loci (eQTLs) identified in skeletal muscle and adipose tissue. We therefore hypothesized that such eQTLs might account for a disproportionate share of the heritability estimated from all SNPs interrogated through GWASs. To test this hypothesis, we applied linear mixed models to the Wellcome Trust Case Control Consortium (WTCCC) T2D data set and to data sets representing Mexican Americans from Starr County, TX, and Mexicans from Mexico City. We estimated the proportion of phenotypic variance attributable to the additive effect of all variants interrogated in these GWASs, as well as a much smaller set of variants identified as eQTLs in human adipose tissue, skeletal muscle, and lymphoblastoid cell lines. The narrow-sense heritability explained by all interrogated SNPs in each of these data sets was substantially greater than the heritability accounted for by genome-wide-significant SNPs (∼10%); GWAS SNPs explained over 50% of phenotypic variance in the WTCCC, Starr County, and Mexico City data sets. The estimate of heritability attributable to cross-tissue eQTLs was greater in the WTCCC data set and among lean Hispanics, whereas adipose eQTLs significantly explained heritability among Hispanics with a body mass index ≥ 30. These results support an important role for regulatory variants in the genetic component of T2D susceptibility, particularly for eQTLs that elicit effects across insulin-responsive peripheral tissues.  相似文献   
12.
Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar‐horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) – all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well‐being. Only by so‐doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change.  相似文献   
13.
Catechol 2, 3-dioxygenase is present in several types of bacteria and undergoes degradation of environmental pollutants through an important key biochemical pathways. Specifically, this enzyme cleaves aromatic rings of several environmental pollutants such as toluene, xylene, naphthalene and biphenyl derivatives. Hence, the importance of Catechol 2, 3-dioxygenase and its role in the degradation of environmental pollutants made us to predict the three-dimensional structure of Catechol 2, 3-dioxygenase from Burkholderia cepacia. The 10ns molecular dynamics simulation was carried out to check the stability of the modeled Catechol 2, 3- dioxygenase. The results show that the model was energetically stable, and it attains their equilibrium within 2000 ps of production MD run. The docking of various petroleum hydrocarbons into the Catechol 2,3-dioxygenase reveals that the benzene, O-xylene, Toluene, Fluorene, Naphthalene, Carbazol, Pyrene, Dibenzothiophene, Anthracene, Phenanthrene, Biphenyl makes strong hydrogen bond and Van der waals interaction with the active site residues of H150, L152, W198, H206, H220, H252, I254, T255, Y261, E271, L276 and F309. Free energy of binding and estimated inhibition constant of these compounds demonstrates that they are energetically stable in their binding cavity. Chrysene shows positive energy of binding in the active site atom of Fe. Except Pyrene all the substrates made close contact with Fe atom by the distance ranges from 1.67 to 2.43 Å. In addition to that, the above mentioned substrate except pyrene all other made π-π stacking interaction with H252 by the distance ranges from 3.40 to 3.90 Å. All these docking results reveal that, except Chrysene all other substrate has good free energy of binding to hold enough in the active site and makes strong VdW interaction with Catechol-2,3-dioxygenase. These results suggest that, the enzyme is capable of catalyzing the above-mentioned substrate.  相似文献   
14.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   
15.
The distribution of microorganisms in pozol balls, a fermented maize dough, was investigated by a polyphasic approach in which we used both culture-dependent and culture-independent methods, including microbial enumeration, fermentation product analysis, quantification of microbial taxa with 16S rRNA-targeted oligonucleotide probes, determination of microbial fingerprints by denaturing gradient gel electrophoresis (DGGE), and 16S ribosomal DNA gene sequencing. Our results demonstrate that DGGE fingerprinting and rRNA quantification should allow workers to precisely and rapidly characterize the microbial assemblage in a spontaneous lactic acid fermented food. Lactic acid bacteria (LAB) accounted for 90 to 97% of the total active microflora; no streptococci were isolated, although members of the genus Streptococcus accounted for 25 to 50% of the microflora. Lactobacillus plantarum and Lactobacillus fermentum, together with members of the genera Leuconostoc and Weissella, were the other dominant organisms. The overall activity was more important at the periphery of a ball, where eucaryotes, enterobacteria, and bacterial exopolysacharide producers developed. Our results also showed that the metabolism of heterofermentative LAB was influenced in situ by the distribution of the LAB in the pozol ball, whereas homolactic fermentation was controlled primarily by sugar limitation. We propose that starch is first degraded by amylases from LAB and that the resulting sugars, together with the lactate produced, allow a secondary flora to develop in the presence of oxygen. Our results strongly suggest that cultivation-independent methods should be used to study traditional fermented foods.  相似文献   
16.
17.
Freshly prepared pozol, a traditional Mexican fermented maize dough, contained (c.f.u./g wet wt): lactic acid bacteria, 104 to 106; aerobic mesophiles, 104 to 105; Enterobacteriaceae, 102 to 103; yeasts, 102 to 104; and mould propagules, <103. After 30 h at 28°C the numbers were, respectively: 109, 7×106, 5×105, 106 and 104. Soaking alkali-treated grains overnight allowed lactic acid bacteria, aerobic mesophiles and Enterobacteriaceae to grow and these then constituted the primary microbial flora of the pozol dough. Grinding in a commercial mill inoculated the dough with lactic acid bacteria, aerobic mesophiles, Enterobacteriaceae and yeasts. Other processing stages, including the nature of the surface upon which the balls were made, handling of the dough, and air, contributed only minor numbers of microbes compared with the two major sources, soaking and grinding. The pH of pozol fell from an initial value of 7.3 to 4.6 after 30 h incubation at 28°C. The numbers of Enterobacteriaceae and other aerobic mesophilic bacteria remained constant between 11 and 30 h incubation and there was no evidence of the acidic conditions having any lethal effects on these organisms.  相似文献   
18.
Two bacterial strains (BQ1 and BQ8) were isolated from decomposed soft foam. These were selected for their capacity to grow in a minimal medium (MM) supplemented with a commercial surface-coating polyurethane (PU) (Hydroform) as the carbon source (MM-PUh). Both bacterial strains were identified as Alicycliphilus sp. by comparative 16S rRNA gene sequence analysis. Growth in MM-PUh showed hyperbolic behavior, with BQ1 producing higher maximum growth (17.8 ± 0.6 mg·ml−1) than BQ8 (14.0 ± 0.6 mg·ml−1) after 100 h of culture. Nuclear magnetic resonance, Fourier transform infrared (IR) spectroscopy, and gas chromatography-mass spectrometry analyses of Hydroform showed that it was a polyester PU type which also contained N-methylpyrrolidone (NMP) as an additive. Alicycliphilus sp. utilizes NMP during the first stage of growth and was able to use it as the sole carbon and nitrogen source, with calculated Ks values of about 8 mg·ml−1. Enzymatic activities related to PU degradation (esterase, protease, and urease activities) were tested by using differential media and activity assays in cell-free supernatants of bacterial cultures in MM-PUh. Induction of esterase activity in inoculated MM-PUh, but not that of protease or urease activities, was observed at 12 h of culture. Esterase activity reached its maximum at 18 h and was maintained at 50% of its maximal activity until the end of the analysis (120 h). The capacity of Alicycliphilus sp. to degrade PU was demonstrated by changes in the PU IR spectrum and by the numerous holes produced in solid PU observed by scanning electron microscopy after bacterial culture. Changes in the PU IR spectra indicate that an esterase activity is involved in PU degradation.  相似文献   
19.
20.
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1’s effects on liver by comparing wild-type controls, heterozygous igf1+/?, and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号