首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   3篇
  国内免费   1篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   13篇
  2010年   14篇
  2009年   11篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   9篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
  1962年   1篇
  1959年   1篇
  1958年   3篇
  1956年   3篇
  1954年   1篇
  1953年   1篇
  1948年   2篇
排序方式: 共有180条查询结果,搜索用时 31 毫秒
91.
Endogenous pararetroviruses (EPRVs) represent a new class of dispersed repetitive DNA in plants. The genomes of many Nicotiana species and other solanaceous plants are rich in EPRVs. Distinct EPRV families are present in N. sylvestris ( Ns ) and in N. tomentosiformis ( Nto ), the two diploid progenitors of allotetraploid N. tabacum . Nicotiana EPRVs represent an interesting type of repetitive sequence to analyse in polyploids because of their potential impact on plant fitness and the epigenetic architecture of plant genomes. The Ns EPRV family appears identical in N. sylvestris and N. tabacum , indicating little change has occurred in either species since polyploid formation. By contrast, the Nto EPRV family is larger in N. tomentosiformis than in N. tabacum , suggesting either preferential elimination from the polyploid genome or specific accumulation in the diploid genome following polyploidization. The lability of Nto EPRVs might be enhanced by a frequent association with gypsy retrotransposons. Although some EPRVs are probably benign, others are potentially pathogenic or, conversely, determinants of virus resistance. Normally quiescent EPRVs can be reactivated and cause symptoms of infection in hybrids of species that differ in their EPRV content. EPRVs that furnish immunity to the free virus exemplify the selective value of so-called 'junk' DNA. Variation in the abundance and distribution of EPRVs among related species can be useful in taxonomic and evolutionary studies.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 627–638.  相似文献   
92.
The submerged roots and rhizomes of the aquatic vascular macrophyteNuphar lutea (L.) Sm. are aerated, at least in part, by pressurizedventilation. Depending on temperature differences of up to 5K between the inside of young, just-emerged leaves and the surroundingair, pressure differences of 79 to 100 Pa higher than atmosphericare detectable inside the lacunuous spongy parenchyma of theleaf blades. The pressurization is a consequence of structuralfeatures of leaf tissues separating the air filled spaces ofthe spongy parenchyma from the atmosphere. These tissues areacting as thermo-osmotic partitions. Whereas the dimensionsof the stomatal openings (about 5·6 x 2·4 µm)and of the intercellular spaces of the palisade parenchyma (diametersabout 15 µm) are too large, those of the monolayers ofcells separating the palisade and the spongy parenchyma (diameters:0·7–1·2 µm) are small enough to impedefree gaseous diffusion. This inner non-homogeneous partitioninggives rise to the so-called Knudsen diffusion, a physical phenomenonleading to pressurization of the warmer air inside the spongyparenchyma. The rising pressure difference is strong enoughto establish an air flow through the aerenchyma of the wholeplant and out of the most porous older leaves in which a temperatureinduced pressurization is never detectable. These thermo-osmoticallyactive leaves enhance the influx of air to the rhizome and thediffusion path for oxygen to the roots is shortened to the distancebetween rhizome and root tips. Therefore, pressurized ventilationin Nuphar is seen to be of considerable ecological importancefor plant life in anaerobic environments. Key words: Aeration, leaf anatomy, thermo-osmosis of gases, Nuphar lutea  相似文献   
93.
Ornithine decarboxylase (ornithine carboxy lyase; EC 4.1.1.17) (ODC) from Tetrahymena thermophila was purified 6,300 fold employing fractionated ammonium sulfate precipitation, gel permeation chromatography on Sephadex G-150, ion exchange chromatography on DEAE-Sepharose CL-6B, and preparative isoelectric focussing. The product obtained in 24% yield was a preparation of the specific activity of 10,200 nmol CO2mdh-1mdmg-1. The purified enzyme was rather stable at 37°C (14% loss of activity within 1 h). The molecular and catalytic properties of this enzyme were investigated. The isoelectric point was 5.7 and the molecular weight (MW) was estimated to be 68,000 under nondenaturing conditions. The pH optimum was between 6.0 and 7.0, the Km for the substrate L-ornithine was 0.11 mM, and the Km for the cofactor pyridoxal 5-phosphate was 0.12 μM; the product of ODC catalysis, putrescine, was a poor inhibitor with an estimated Ki of about 10 mM. The enzyme was inhibited competitively by D-ornithine with a Ki of 1.6 mM and by α-difluoromethylornithine with a Ki of 0.15 mM. The latter one, an enzyme activated irreversible inhibitor of mammalian ODC, inactivated the enzyme from T. thermophila at high concentrations with a half life time of 14 min. Other basic amino acids, e.g. L-lysine, L-arginine, and L-histidine, were neither substrates nor inhibitors of the enzyme, as were the diamines 1,3-diaminopropanol and cadaverine, the polyamines spermidine and spermine and the cosubstrate analogues pyridoxal and pyridoxamine-5-phosphate. Polyanions were activators of the enzyme: The half maximal ODC stimulating concentrations were 2.2 μgmdml-1 for RNA, 6.1 μgmdml-1 for DNA, and 0.25 μgmdml-1 for heparin. These results indicate that ODC from T. thermophila shares several properties with ODC preparations from other organisms but in some respects, especially in activator and inhibitor specificity, there are some special qualities unique to this particular protozoan enzyme.  相似文献   
94.
Abstract Salt-stressed plants often show Ca deficiency symptoms. The effects of NaCl salinity (1 to 150 mol m-3) and supplemental Ca (10 mol m-3) on Na and Ca transport in barley (Hordeum vulgare L.) and their relationship to growth were investigated. The adjustment of Na and Ca transport was investigated by examining young seedlings exposed to short-term (immediate) and long-term (7 d) exposure to salinity. When the plants were exposed to long-term treatments of salinity, the rate of sodium accumulation in roots was approximately 10 to 15% of short-term treatments. No significant adjustment in the transport to the shoot was observed. Rates of tracer (22Na) transport were compared to calculated rates based on relative growth rates and tissue element concentrations. Comparisons between measured tracer and calculated rates of transport indicate that 22Na transport may underestimate transport to the shoot because of dilution of the tracer in the root cytoplasm. Calcium uptake showed only minor adjustment with time. Measured rates of tracer transport to the shoot correlated well with calculated values. The transport and tissue concentrations of Na were significantly affected by supplemental Ca. Calcium transport and tissue concentrations were markedly inhibited by salinity. Supplemental Ca increased Ca transport and accumulation at all NaCl treatments above that of control plants without supplemental Ca. Salinity inhibited plant growth at 150 mol m -3NaCl, but not at 75 mol m-3. Supplemental Ca significantly improved root length but not fresh weight after 7d of salinity, although differences in fresh weight were detected after 9d. There were significant Na-Ca interactions with ion transport, ion accumulation, and growth. The effects of salinity on Na and Ca transport to the shoot do not appear to play a major role in shoot growth of barley.  相似文献   
95.
1. Many insects host secondary bacterial symbionts that are known to have wide‐ranging effects on their hosts, from host‐plant use to resistance against natural enemies. This has been most widely studied in aphids, which have become a model system to study insect–bacteria interactions. 2. While there is an increasing understanding of the role of symbionts in aphids from controlled laboratory studies, we are only beginning to explore the impact of hosting these symbionts on eco‐evolutionary dynamics in natural systems. To date, many research groups have identified bacterial symbionts from various aphid species, providing us with a bank of literature on aphid–symbiont associations in natural populations. 3. The role of secondary symbionts in aphids is discussed, and the taxonomic and geographical distribution of symbionts among aphids are summarised, and the potential reasons for the patterns observed. The need to test for multiple symbiont species (and co‐infections) across many individuals and the whole distribution range of an aphid is highlighted, including sampling on all known host‐plant species. 4. It is further important also to consider variation within the symbiont, the aphid‐host and the surrounding community, e.g. host‐plants or the natural enemies, to understand how these have the potential to mediate aphid–symbiont interactions. 5. Finally, the knowledge gained from experimental work should now be used to understand the role of aphid secondary symbionts in field systems, to fully understand the potentially far‐reaching consequences of aphid endosymbionts on community and ecosystem processes.  相似文献   
96.
SYNOPSIS. Interaction of several plant lectins with the ciliates Stylonychia mytilus, Euplotes aediculatus, and Tetrahymena pyriformis GL, was investigated. The motility of Stylonychia is specifically inhibited by treatment with concanavalin A, with which the 2 other ciliates react only weakly. Stylonychia can regain its motility by shedding the lectin-loaded surface components and rebuilding a new pellicle. Other lectins used in this study did not interact with these ciliates.  相似文献   
97.
Cell reorganization experiments in vitro were performed with dissociated rat testes at different ages of postnatal development namely, newborn, 8–10, 18–25, 35–40, and 90 days. Only newborn and juvenile rat testicular cells reassociated into testicular-like organization in rotation culture. Puberal and adult rat testicular cells show morphogenetic organization when they were deprived of germ cells by busulphan pretreatment. A factor present in testicular tissue of puberal and adult rats inhibits reorganization. The inhibitor is confined to the spermatic cell fraction in the testis.  相似文献   
98.
99.
The circadian petal movement rhythm of Kalanchoë flowers has been studied. The amplitude of the rhythm can be drastically reduced by an appropriate stimulus of a light pulse. It has also been shown that it is possible to stop the rhythm permanently by administering a single light pulse to the flowers. This is interpreted to indicate that the light pulse has sent the circadian rhythm into a stable state of singularity. The conditions which attenuate the rhythm have been investigated both theoretically (on the basis of a previously published model for circadian rhythms) and experimentally. 120 min red light of 230 μW · cm?2, starting briefly before the second petal closure about 30 h after transfer to constant safe light conditions is optimal in inducing rhythm-damping. Damping requires the same duration when the light is given at the corresponding phase during the third or fourth cycle of the rhythm. However, in the first cycle 240 min red light of 230 μW · cm?2 is required to get optimal damping of the rhythm. Conditions to achieve damping for other irradiances are investigated. Individual recordings are presented which show the behaviour of the rhythm when perturbed by light stimuli close to its singularity.  相似文献   
100.
A new model for the origin of pelecypods based on physiological and biomechanical viewpoints is presented. It seems that some early molluscs developed a bivalved shell in response to their migration from firm bottom onto soft sediments as epibenthic crawlers. Here a univalved shell cannot sufficiently protect the mantle cavity from getting clogged by sediment particles. The evolution of the pelecypod shell, of the necessary adductors and ligament, of the byssus and the change from grazing to filter-feeding life habit is explained as a step-by-step change, each stage providing an adaptational improvement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号