首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   1篇
  2014年   5篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2001年   4篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1962年   1篇
  1958年   1篇
  1951年   4篇
  1945年   1篇
  1943年   1篇
  1929年   1篇
  1928年   1篇
  1927年   2篇
  1925年   2篇
  1922年   1篇
  1921年   1篇
  1920年   2篇
  1917年   2篇
  1916年   1篇
  1915年   1篇
  1914年   2篇
  1912年   3篇
  1911年   7篇
  1910年   2篇
  1909年   4篇
  1908年   5篇
  1907年   3篇
  1906年   4篇
  1905年   3篇
  1903年   1篇
  1902年   1篇
排序方式: 共有129条查询结果,搜索用时 31 毫秒
61.

Background

The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I.

Results

The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome.

Conclusion

The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.  相似文献   
62.
63.
64.
Olfactory sensitivity in tsetse flies: a daily rhythm   总被引:3,自引:0,他引:3  
The diurnal tsetse Glossina morsitans morsitans bites especially in early morning and late afternoon; around midday feeding is at a low. In laboratory apparatus that measures the amount of locomotion under constant conditions over the photophase, the flies display a similar patterning of activity levels. The profile of daily rhythms for G. morsitans reported in the literature includes a number of motor and sensory motor systems that fluctuate cophasically. Lacking is a study on the patterning of the senses' response levels. In this paper we present the first instance of a daily modulation in the sense of smell. We stimulated the antennae with concentration series of host-derived odours and measured the spiking rate of cells at different times during the photophase. The concentration-response curves suggest that the sensitivity of antennal olfactory cells flows in parallel with the other daily rhythms. This was also reflected in electroantennograms (EAGs). The electroantennography was extended to G. fuscipes fuscipes, whose level of spontaneous locomotor activity--instead of following a U- shaped pattern--rises gradually over the photophase. Again, the EAGs appeared to parallel the species' locomotor activity. What we believe happens is that the organism tones down the sensitivity of its odour receptors during periods of anticipated inactivity for reasons of economy.   相似文献   
65.
66.
Examination of 18 complete and 6 partial sequences of the major outer- membrane protein from 24 chlamydiae isolates was used to reconstruct their evolutionary relationships. From this analysis, assuming that the clades with 100% bootstrap support are correct, come the following conclusions: (1) The tree of these sequences is not congruent with the phylogeny of the hosts, and thus host switching would seem to have occurred, thereby limiting the extent to which there has been coevolution of parasite and host. (2) The tree is also noncongruent with clustering by type of cell infected, thereby limiting the extent to which there has been coevolution of parasite and the cell type that it infects. (3) The tree is also noncongruent with clustering by the organ infected (eyes or genitalia), thereby limiting the extent to which there has been coevolution of parasite and the organ that it infects. (4) The tree is also noncongruent with genital strains arising from lymphogranuloma venereum strains. (5) The tree is also noncongruent with the geographic site at which the isolates were obtained, thereby limiting the extent of divergence explained by geographic separation. (6) There are estimated to be 185 amino acid positions that are invariable (as opposed to unvaried) in the major outer-membrane protein. There are 10 unvaried positions in the variable domains, of which 9 appear to be invariable, giving some reason to hope that development of a vaccine might be possible. (7) The rate of change of this protein is too small to see increased divergence over the time span of isolation of these genes, giving hope to any vaccine having longevity. Bootstrapping supports those portions of the tree on which the first five conclusions above depend. The picture that these results provide is more one of pathogen versatility than one of coevolutionary constraints. In addition, we examined 10 60-KDa, outer-membrane protein- 2 genes, all but one of which were from these same strains. The tree was not, among the trachomatis strains, congruent with the major-outer- membrane protein tree, suggesting that gene exchange could be occurring among strains. Moreover, there is an apparent slowdown in divergence in this gene, among the trachomatis strains.   相似文献   
67.
Cervicovaginal fluid has an important function in the homeostasis and immunity of the lower female genital tract. Analysis of the cervicovaginal fluid proteome may therefore yield important information about the pathogenesis of numerous gynecological pathologies. Additionally, cervicovaginal fluid has great potential as a source of biomarkers for these conditions.  相似文献   
68.
69.
70.

Background

Turkey is an important agricultural species and is largely used as a meat bird. In 2004, turkey represented 6.5% of the world poultry meat production. The world-wide turkey population has rapidly grown due to increased commercial farming. Due to the high demand for turkey meat from both consumers and industry global turkey stocks increased from 100 million in 1970 to over 276 million in 2004. This rapidly increasing importance of turkeys was a reason to design this study for the estimation of genetic parameters that control body weight, body composition, meat quality traits and parameters that shape the growth curve in turkey birds.

Results

The average heritability estimate for body weight traits was 0.38, except for early weights that were strongly affected by maternal effects. This study showed that body weight traits, upper asymptote (a growth curve trait), percent breast meat and redness of meat had high heritability whereas heritabilities of breast length, breast width, percent drip loss, ultimate pH, lightness and yellowness of meat were medium to low. We found high positive genetic and phenotypic correlations between body weight, upper asymptote, most breast meat yield traits and percent drip loss but percent drip loss was found strongly negatively correlated with ultimate pH. Percent breast meat, however, showed genetic correlations close to zero with body weight traits and upper asymptote.

Conclusion

The results of this analysis and the growth curve from the studied population of turkey birds suggest that the turkey birds could be selected for breeding between 60 and 80 days of age in order to improve overall production and the production of desirable cuts of meat. The continuous selection of birds within this age range could promote high growth rates but specific attention to meat quality would be needed to avoid a negative impact on the quality of meat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号