首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2227篇
  免费   218篇
  国内免费   1篇
  2023年   4篇
  2022年   13篇
  2021年   36篇
  2020年   21篇
  2019年   29篇
  2018年   24篇
  2017年   30篇
  2016年   66篇
  2015年   89篇
  2014年   84篇
  2013年   114篇
  2012年   185篇
  2011年   167篇
  2010年   111篇
  2009年   76篇
  2008年   174篇
  2007年   156篇
  2006年   159篇
  2005年   138篇
  2004年   124篇
  2003年   121篇
  2002年   160篇
  2001年   30篇
  2000年   23篇
  1999年   31篇
  1998年   42篇
  1997年   12篇
  1996年   16篇
  1995年   18篇
  1994年   22篇
  1993年   15篇
  1992年   19篇
  1991年   13篇
  1990年   8篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   9篇
  1981年   8篇
  1980年   13篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1955年   3篇
排序方式: 共有2446条查询结果,搜索用时 78 毫秒
911.
912.
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.  相似文献   
913.
The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways.  相似文献   
914.
Land use change has the potential to cause severe ecosystem degradation and drive changes in disease transmission and emergence. Broadscale clearing of native vegetation for agriculture in southwestern Australia has resulted in severe ecosystem degradation, which has been compounded by the subsequent development of large areas of dryland salinity. The mosquito-borne disease, Ross River virus (RRV), has been noted as a potential adverse human health outcome in these salinity affected regions. The association between dryland salinity and RRV disease was therefore tested by undertaking a spatial analysis of disease notification records using standard and Bayesian techniques. To overcome inherent limitations with notification data, serological RRV antibody prevalence was also investigated. Neither method revealed a significant association with dryland salinity, however, the spatial scale imposed limited the sensitivity of both studies. Thus, further multidisciplinary studies are required to overcome these limitations and advance understanding of this ecosystem health issue, particularly using variables that can be investigated on a finer scale.  相似文献   
915.
Sandwich ELISA microarrays have great potential for validating disease biomarkers. Each ELISA relies on robust-affinity reagents that retain activity when immobilized on a solid surface or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional IgG. Unfortunately, scFv are typically less active than IgG following immobilization on a solid surface and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv constructs to determine a more robust strategy for using scFv as ELISA reagents. Two promising strategies emerged from these studies: (i) the precapture of epitope-tagged scFv using an antiepitope antibody and (ii) the direct printing of a thioredoxin (TRX)/scFv fusion protein on glass slides. Both strategies improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the antiepitope precapture method introduced a risk of reagent transfer. Using the direct printing method, we show that scFv against prostate-specific antigen (PSA) are highly specific when tested against 21 different IgG-based assays. In addition, the scFv microarray PSA assay gave comparable quantitative results (R(2) = 0.95) to a commercial 96-well ELISA when tested using human serum samples. In addition, we find that TRX-scFv fusions against epidermal growth factor and toxin X have good LOD. Overall, these results suggest that minor modifications of the scFv construct are sufficient to produce reagents that are suitable for use in multiplex assay systems.  相似文献   
916.
Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.  相似文献   
917.
Cellular homeostasis and responses to stimuli are mediated by complex signaling network events dominated by changes in protein phosphorylation states. Understanding information flow in the network is essential for correlating signaling changes to cell physiology. Tyrosine phosphorylation constitutes only a small portion of all protein phosphorylation, but its importance is manifested by the significant role it plays in diseases such as cancer. A peptide-based immunoassay microarray, designed to provide site specificity, quantification, broad coverage, and accessibility, is described that profiles 45 tyrosine phosphorylation sites across 34 proteins. Epidermal growth factor-stimulated A431 cells in the absence and presence of kinase inhibitors analyzed by microarrays showed biologically validated tyrosine phosphorylation changes and unanticipated activation of other targets. The approach is scalable for increasing the breadth of content as well as for interrogating other types of protein posttranslational modifications. ( Journal of Biomolecular Screening 2008:626-637).  相似文献   
918.
919.
920.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号