首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   3篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   11篇
  2012年   16篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1975年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
141.
Wu  WL  Hsiao  IL  Fu  YM  Chen  WH 《Plant molecular biology》1999,40(4):749-749
Plant Molecular Biology -  相似文献   
142.
143.
Background and AimsNon-native plant species are not restricted to lowlands, but increasingly are invading high elevations. While for both native and non-native species we expected variability of plant functional traits due to the changing environmental conditions along elevational gradients, we additionally assumed that non-native species are characterized by a more acquisitive growth strategy, as traits reflecting such a strategy have been found to correlate with invasion success. Furthermore, the typical lowland introduction of non-native species coming from multiple origins should lead to higher trait variability within populations of non-native species specifically at low elevations, and they might therefore occupy a larger total trait space.MethodsAlong an elevational gradient ranging from 55 to 1925 m a.s.l. on Tenerife, we collected leaves from eight replicate individuals in eight evenly distributed populations of five native and six non-native forb species. In each population, we measured ten eco-morphological and leaf biochemical traits and calculated trait variability within each population and the total trait space occupied by native and non-native species.Key ResultsWe found both positive (e.g. leaf dry matter content) and negative (e.g. leaf N) correlations with elevation for native species, but only few responses for non-native species. For non-native species, within-population variability of leaf dry matter content and specific leaf area decreased with elevation, but increased for native species. The total trait space occupied by all non-native species was smaller than and a subset of that of native species.ConclusionsWe found little evidence that intraspecific trait variability is associated with the success of non-native species to spread towards higher elevations. Instead, for non-native species, our results indicate that intermediate trait values that meet the requirements of various conditions are favourable across the changing environmental conditions along elevational gradients. As a consequence, this might prevent non-native species from overcoming abruptly changing environmental conditions, such as when crossing the treeline.  相似文献   
144.
Some like it hot – and spicy: Chili and the capsaicin receptor TRPV1 Since many hundred years, many people like to eat chili pepper containing the pungent ingredient capsaicin that is responsible for making the food hot and spicy. Capsaicin activates transient receptor potential TRPV1 channels that are predominantly expressed in sensory neurons involved in pain sensation. TRPV1 is a noxious heat sensor and can also be activated by protons and several animal toxins. Thus, TRPV1 is a polymodal sensor of multiple noxious stimuli that cause pain. TRPV1 functions as a nocisensor that detects chemical and thermal stimuli and transduces this stimulation into sensory nerve impulses which leads to the perception of pain. Inhibition of TRPV1 reduces or abolishes pain sensation. A strong activation of TRPV1 induces a long-lasting refractory period of the pain-detecting system (desensitization) and may even lead to an irreversible loss of TRPV1-expressing sensory neurons. It still remains unclear why many people love hot and spicy food, accompanied by a burning sensation in the mouth.  相似文献   
145.
146.
147.

Background  

Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources.  相似文献   
148.
The interaction between NADPH-cytochrome P-450 reductase and a series of cytochrome P-450 isozymes was investigated using UV-visible spectrophotometry. In the absence of substrate the interactions between the reductase and RLM3, RLM5, and RLM5a were tight, exhibiting sub-micromolar dissociation constants and resulted in type I spectra of varying magnitude from which the following increases in the proportion of high spin hemoprotein were calculated; RLM3 (7%), RLM5 (36%), RLM5a (6%), LM2 (29%), RLM2 (0%). Preincubation of LM2 with its type I substrate benzphetamine increased the affinity of the cytochrome for the reductase. Using initial estimates of the P-450 spin states in the absence of reductase in conjunction with the spectral binding data and equations relating these parameters to the microequilibria for the association of reductase with high or low spin P-450, RLM3, RLM5, RLM5a and LM2 were shown to bind significantly more tightly to high spin P-450. The relevance of this data to the understanding of spin state influence on P-450 reduction is discussed.  相似文献   
149.
Retention of cryptic genes in microbial populations   总被引:5,自引:0,他引:5  
Cryptic genes are silenced genes that can still be reactivated by mutation. Since they can make no positive contribution to the fitness of their carriers, it is not clear why many cryptic genes in microbial populations have not degenerated into useless DNA sequences. Hall et al. (1983) have suggested that cryptic genes have persisted because of occasional strong environmental selection for reactivated genes. The present mathematical study supports their suggestion. It shows that a cryptic gene can be retained without having any selective advantage over a useless DNA sequence, if selection for the reactivated gene occasionally occurs for a substantially long time.   相似文献   
150.
Transcription analysis in Trypanosoma brucei   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号