首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   2篇
  国内免费   3篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   7篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   6篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1975年   2篇
  1972年   6篇
  1971年   3篇
  1968年   1篇
  1958年   5篇
  1957年   2篇
  1956年   5篇
  1955年   5篇
  1954年   5篇
  1953年   4篇
  1952年   2篇
  1951年   4篇
  1950年   4篇
  1948年   1篇
排序方式: 共有165条查询结果,搜索用时 234 毫秒
51.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   
52.
Abstract.  Rehydration in the triatomine bug Rhodnius prolixus (Stål) is dependent on the blood meal, and water balance regulation is crucial for survival of starving bugs. In an experimental arena with zones at different climatic conditions, starved R. prolixus nymphs prefer a cooler and more humid zone, stopping there more often and for longer periods. This is probably a behavioural adaptation to limit water loss and reduce metabolic rate. In the Venezuelan State of Portuguesa, temperature and humidity were monitored in three kinds of potential refugia during the dry season: (i) in a palm roof; (ii) in a crack of the wall of a house; and (iii) in a palm tree crown. Fluctuations in temperature and saturation deficit are not very different inside and outside the palm roof except during a few hours of the day when the sun is at its zenith. In the crack of the wall, the diurnal temperature range is reduced to 6.5 °C compared with 12.4 °C outside, and the saturation deficit varies by only 7.6 hPa compared with 28.6 hPa outside. In the palm tree crown, the daily temperature range is only 4.2 °C compared with 13.8 °C outside, and the saturation deficit is permanently < 5 hPa. The microclimatic conditions in the palm tree crown would appear to be ideal for starving R. prolixus , but this kind of refugium generally harbours low densities of bugs, probably related to a combination of predation, pathogens and lower mean temperature within the crown. Such biotic and abiotic constraints play a lesser role in the less ideal palm roof and wall crack refugia where bugs can proliferate as long as hosts are readily available nearby.  相似文献   
53.
54.
Inhibitors acting on Nucleic Acid Synthesis in an Oncogenic RNA Virus   总被引:5,自引:0,他引:5  
IN infection with an oncogenic RNA virus, synthesis of viral RNA seems to be catalysed by an RNA dependent DNA polymerase in the host cell1–4. Several specific inhibitors of viral DNA polymerases have been found5–7 and Spiegelman8 has shown that the activity of viral enzymes depends strongly on the chemical composition of the template. We report here first a new highly specific poison of the Rauscher murine leukaemia virus (RMLV) DNA polymerases; second, several inactivators of the RNA and DNA template involved in the RMLV enzyme systems; and third, the action of actinomycin D on viral DNA polymerases and on host DNA/RNA polymerase. The results are discussed with respect to the influence of actinomycin D on virus multiplication.  相似文献   
55.
56.
57.
ABSTRACT. By use of a monoclonal antibody directed against purified lectin from the sponge Geodia cydonium it was demonstrated that the mucocysts of Tetrahymena pyriformis contain a substance immunologically similar to that found in G. cydonium . In extracts of T. pyriformis the monoclonal antibody recognizes a 36 kDa protein; binding could be abolished by adsorption of the antibody with (i) crude extract, (ii) purified lectin from G. cydonium and (iii) a 29 aa long peptide. In addition the data show that 10-6 M of insulin causes first the release of mucocyst material, which reacts with the lectin antibody, and second its subsequent redistribution on the surface of the somatic cilia and the oral field.  相似文献   
58.
59.
In the present study, we analyze the fate of airborne nitrogen in heathland ecosystems (NW Germany) by means of a 15N tracer experiment. Our objective was to quantify N sequestration and N allocation patterns in an ecosystem that is naturally limited by N, but that has been exposed to airborne N inputs exceeding critical loads for more than 3 decades. We hypothesized that the system has a tendency towards N saturation, which should be indicated by low N sequestration and high N leaching. We analyzed 15N partitioning (aboveground biomass and soil horizons) and investigated 15N leaching over 2 years following a 15N tracer pulse addition. 15N tracer recovery was 90% and 76% in the first and second year, respectively. Contrary to our expectations, more than 99% of the tracer recovered was sequestered in the biomass and soil, while leaching losses were <0.05% after 2 years. Mosses were the most important short‐term sink for 15N (64% recovery in the first year), followed by the organic layer. In the second year, the moss layer developed from a sink to a source (23% losses), and soil compartments were the most important sink (gains of 11.2% in the second year). Low 15N recovery in the current year's shoots of Calluna vulgaris (<2%) indicated minor availability of 15N tracer sequestered in the organic layer. N partitioning patterns showed that the investigated heaths still have conservative N cycling, even after several decades of high N loads. This finding is mainly attributable to the high immobilization capacities for N of podzols in soil compartments. In the long term, the podzol A‐ and B‐horizons in particular may immobilize considerable amounts of incoming N. Since N compounds of these horizons are not readily bio‐available, podzols have a high potential to withdraw airborne N from the system's N cycle.  相似文献   
60.
Tropical forest ecosystems play an important role in regulating the global climate, yet deforestation and land‐use change mean that the tropical carbon sink is increasingly influenced by agroecosystems and pastures. Despite this, it is not yet fully understood how carbon cycling in the tropics responds to land‐use change, particularly for pasture and afforestation. Thus, the objectives of our study were: (1) to elucidate the environmental controls and the impact of management on gross primary production (GPP), total ecosystem respiration (TER) and net ecosystem CO2 exchange (NEE); (2) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3) to compare eddy covariance‐derived carbon budgets with biomass and soil inventory data. We performed comparative measurements of NEE in a tropical C4 pasture and an adjacent afforestation with native tree species in Sardinilla (Panama) from 2007 to 2009. Pronounced seasonal variation in GPP, TER and NEE were closely related to radiation, soil moisture, and C3 vs. C4 plant physiology. The shallow rooting depth of grasses compared with trees resulted in a higher sensitivity of the pasture ecosystem to water limitation and seasonal drought. During 2008, substantial amounts of carbon were sequestered by the afforestation (–442 g C m–2, negative values denote ecosystem carbon uptake), which was in agreement with biometric observations (–450 g C m–2). In contrast, the pasture ecosystem was a strong carbon source in 2008 and 2009 (261 g C m–2), associated with seasonal drought and overgrazing. In addition, soil carbon isotope data indicated rapid carbon turnover after conversion from C4 pasture to C3 afforestation. Our results clearly show the potential for considerable carbon sequestration of tropical afforestation and highlight the risk of carbon losses from pasture ecosystems in a seasonal tropical climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号