首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   20篇
  268篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   9篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   7篇
  2001年   18篇
  2000年   9篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   6篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1966年   2篇
  1935年   2篇
  1932年   2篇
  1923年   4篇
  1920年   2篇
  1887年   3篇
排序方式: 共有268条查询结果,搜索用时 0 毫秒
1.
Orotidine-5'-monophosphate decarboxylase (OD-Case) catalyzes the conversion of orotidine 5'-monophosphate to UMP. In mammals, ODCase is present as part of a bifunctional protein which also contains orotate phosphoribosyltransferase; the preceding enzyme in the de novo UMP biosynthetic pathway. We have isolated a plasmid (pMEJ) which contains a cDNA for the ODCase domain of UMP synthase. Insertion of this sequence into an Escherichia coli expression vector (pUC12) has allowed for the expression of ODCase and not orotate phosphoribosyltransferase in E. coli. The molecular weight of the expressed protein is 26,000-27,300 from immunoblot analysis which corresponds closely to the molecular weight of the ODCase domain (28,500) isolated by tryptic digestion of UMP synthase. We have sequenced the cDNA insert of pMEJ and deduced the amino acid sequence. The molecular weight of the ODCase domain calculated from the amino acid sequence in 28,654. Comparison of the deduced amino acid sequence from pMEJ with that for yeast ODCase (a monofunctional protein) demonstrated that 52% of the amino acids were identical when the two sequences are compared. Furthermore, several stretches of the amino acid sequence have 80% or greater absolute homology.  相似文献   
2.
3.
4.
5.
The brine shrimp, Artemia, contains 3 alpha- and 2 beta-tubulins as shown by Coomassie Blue staining of two-dimensional gels. In order to study the biosynthetic origins of the isotubulins, we hybridized cloned Drosophila tubulin genes, under stringent conditions, to blots of Artemia DNA and RNA. Southern blot analyses indicate a tubulin gene family of limited complexity. One size class of alpha- and beta-tubulin mRNA at 1800 bases was observed on Northern blots. Fluorograms of Artemia tubulin synthesized in vitro, revealed one alpha- and one beta-tubulin on two-dimensional gels, indicating that each mRNA is translated into one polypeptide and that additional tubulin spots observed on Coomassie-stained two-dimensional gels may arise posttranslationally. Artemia tubulin, which was either purified to homogeneity, or in crude cell-free extracts, was analyzed with a panel of tubulin-specific antibodies. The presence of acetylated tubulin, restricted to one of the three major alpha-tubulin spots on two-dimensional gels, demonstrated that Artemia tubulin diversity is partially generated by posttranslational mechanisms. Artemia tubulin reacted very well with an antibody to tyrosinated tubulin, but there was no, or very little, detectable detyrosinated tubulin unless the purified Artemia tubulin was exposed to carboxypeptidase. The results suggest that all microtubule-dependent events in Artemia, a complex metazoan animal, are accomplished with microtubules composed from a limited repertoire of tubulins and that none of these events require appreciable amounts of detyrosinated tubulin.  相似文献   
6.
Overcoming de novo and acquired resistance to anticancer drugs that target signaling networks is a formidable challenge for drug design and effective cancer therapy. Understanding the mechanisms by which this resistance arises may offer a route to addressing the insensitivity of signaling networks to drug intervention and restore the efficacy of anticancer therapy. Extending our recent work identifying PTEN as a key regulator of Herceptin sensitivity, we present an integrated theoretical and experimental approach to study the compensatory mechanisms within the PI3K/PTEN/AKT signaling network that afford resistance to receptor tyrosine kinase (RTK) inhibition by anti-HER2 monoclonal antibodies. In a computational model representing the dynamics of the signaling network, we define a single control parameter that encapsulates the balance of activities of the enzymes involved in the PI3K/PTEN/AKT cycle. By varying this control parameter we are able to demonstrate both distinct dynamic regimes of behavior of the signaling network and the transitions between those regimes. We demonstrate resistance, sensitivity, and suppression of RTK signals by the signaling network. Through model analysis we link the sensitivity-to-resistance transition to specific compensatory mechanisms within the signaling network. We study this transition in detail theoretically by variation of activities of PTEN, PI3K, AKT enzymes, and use the results to inform experiments that perturb the signaling network using combinatorial inhibition of RTK, PTEN, and PI3K enzymes in human ovarian carcinoma cell lines. We find good alignment between theoretical predictions and experimental results. We discuss the application of the results to the challenges of hypersensitivity of the signaling network to RTK signals, suppression of drug resistance, and efficacy of drug combinations in anticancer therapy.  相似文献   
7.
To quantify the contribution of endolithic phototrophs to primary production of dead carbonate substrates, experimental blocks of cleaned Porites lobata Dana skeleton were placed at three different sites in Kaneohe Bay, Hawaii: inshore, lagoonal, and oceanic. After 6 months of exposure, experimental blocks were colonized by communities characteristic of their estuarine (inshore, lagoonal) and oceanic (ocean) environments. Blocks were sub-sampled; net photosynthesis (NP) and chl a concentrations of the whole blocks (epi- and endoliths) and scrapped blocks (only endoliths) were quantified. Green turf algae colonized predominantly inshore and lagoonal blocks, while encrusting corallines were the dominant epiliths colonizing oceanic blocks. Four main species of endolithic phototrophs were identified in all blocks: Mastigocoleus testarum Lagerheim, Plectonema terebrans Bornet and Flahault (cyanobacteria), Phaeophila dendroides Crouan and Crouan, and Ostreobium quekettii Bornet and Flahault (Chlorophytes). While epiliths were very different between sites, NP rates and chl a concentration of endoliths did not vary significantly and were positively correlated (191±25 mmol C·m−2·day−1 and 590±150 mg chl a·m−2 of reef, respectively). Assimilation numbers for whole communities, including both epilithic and endolithic communities, were similar to those measured for endolithic communities alone (average of 0.3 g C·g chl a·h−1). Under experimental conditions, the contribution of endolithic phototrophs to community NP rates of blocks ranged from 56% to 81%, and under natural conditions, we estimated that this contribution ranged between 32% and 46%. Thus, we showed that the endolithic phototrophs are one of the major primary producers in dead coral substrates in a wide range of coral reef environments.  相似文献   
8.
The centromere of eukaryotic chromosomes is essential for the faithful segregation and inheritance of genetic information. In the majority of eukaryotic species, centromeres are associated with highly repetitive DNA, and as a consequence, the boundary for a functional centromere is difficult to define. In this study, we demonstrate that the centers of rice centromeres are occupied by a 155-bp satellite repeat, CentO, and a centromere-specific retrotransposon, CRR. The CentO satellite is located within the chromosomal regions to which the spindle fibers attach. CentO is quantitatively variable among the 12 rice centromeres, ranging from 65 kb to 2 Mb, and is interrupted irregularly by CRR elements. The break points of 14 rice centromere misdivision events were mapped to the middle of the CentO arrays, suggesting that the CentO satellite is located within the functional domain of rice centromeres. Our results demonstrate that the CentO satellite may be a key DNA element for rice centromere function.  相似文献   
9.
Cbl-b, a member of the Cbl family of E3 ubiquitin ligases, plays an important role in the activation of lymphocytes. However, its function in platelets remains unknown. We show that Cbl-b is expressed in human platelets along with c-Cbl, but in contrast to c-Cbl, it is not tyrosine-phosphorylated upon glycoprotein VI (GPVI) stimulation. Cbl-b, unlike c-Cbl, is not required for Syk ubiquitylation downstream of GPVI activation. Phospholipase Cγ2 (PLCγ2) and Bruton''s tyrosine kinase (BTK) are constituently associated with Cbl-b. Cbl-b-deficient (Cbl-b−/−) platelets display an inhibition in the concentration-response curve for GPVI-specific agonist-induced aggregation, secretion, and Ca2+ mobilization. A parallel inhibition is found for activation of PLCγ2 and BTK. However, Syk activation is not affected by the absence of Cbl-b, indicating that Cbl-b acts downstream of Syk but upstream of BTK and PLCγ2. When Cbl-b−/− mice were tested in the ferric chloride thrombosis model, occlusion time was increased and clot stability was reduced compared with wild type controls. These data indicate that Cbl-b plays a positive modulatory role in GPVI-dependent platelet signaling, which translates to an important regulatory role in hemostasis and thrombosis in vivo.  相似文献   
10.
Ornithine decarboxylase (ODC) activity usually rises to a peak a few hours after a trophic stimulus. The stimulation of ODC has been shown to depend on extracellular calcium in several in vitro eukaryotic systems. We have investigated the effect of calcium concentration on ODC activity and have found that ODC is stimulated when CaCl2 alone is added to calcium-deprived cells. Epithelial cells from calf esophagus were cultured and grown until stratified. Replacement of medium with fresh serum-free medium resulted in stimulation of ODC activity, which peaked at 4 hours and declined to basal level by 10 hours. Subsequent depletion of Ca2+ either by addition of ethylene glycol bis (beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) or by replacement of medium with Ca2+-free medium, resulted in obliteration of ODC activity 4 hours later. Conversely, cultures in which medium was replaced with Ca2+-free medium and at 10 hours were repleted with Ca2+ (either by addition of CaCl2 or by replacement of medium with Ca2+-containing medium) exhibited a pronounced elevation of ODC activity 4 hours later. ODC activity peaked at 6 hours after the addition of CaCl2 and declined by 8 hours. The effect was elicited by a wide range of concentrations of added Ca2+ from 0.1 mM to 4.0 mM, but was maximal at 1.0 mM. ODC activity was totally abolished if either cycloheximide (10 micrograms/ml) or putrescine (10 mM) was added to cultures immediately prior to Ca2+ addition. Actinomycin D (2, 5, or 10 micrograms/ml) added 30 minutes before Ca2+ did not prevent the stimulation of ODC by added Ca2+. Stimulation by Ca2+ is dependent on (1) absence of Ca2+ during the initial 10-hour incubation and (2) duration of incubation in Ca2+-free medium prior to Ca2+ replenishment. The results indicate that Ca2+ can increase ODC in epithelial cells exposed to Ca2+-depleted medium and that the increase in ODC depends on protein synthesis but is not inhibited by actinomycin D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号