首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1915883篇
  免费   189154篇
  国内免费   1963篇
  2021年   19133篇
  2018年   20612篇
  2017年   19407篇
  2016年   30760篇
  2015年   45037篇
  2014年   53356篇
  2013年   79795篇
  2012年   56792篇
  2011年   49573篇
  2010年   50690篇
  2009年   50086篇
  2008年   44659篇
  2007年   44067篇
  2006年   45885篇
  2005年   46529篇
  2004年   45601篇
  2003年   42758篇
  2002年   40540篇
  2001年   64244篇
  2000年   62836篇
  1999年   54625篇
  1998年   29441篇
  1997年   29246篇
  1996年   28126篇
  1995年   26360篇
  1994年   25890篇
  1993年   25321篇
  1992年   46474篇
  1991年   44413篇
  1990年   42993篇
  1989年   43222篇
  1988年   40195篇
  1987年   38045篇
  1986年   35900篇
  1985年   37252篇
  1984年   33608篇
  1983年   29220篇
  1982年   26234篇
  1981年   24727篇
  1980年   23073篇
  1979年   30271篇
  1978年   26071篇
  1977年   24401篇
  1976年   22993篇
  1975年   23962篇
  1974年   25614篇
  1973年   25658篇
  1972年   22609篇
  1971年   20720篇
  1970年   18115篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
995.
The present study was undertaken to comparatively investigate the attachment capacities of Azospirillum brasilenseSp245 and its lipopolysaccharide-defective Omegon-Km mutants KM018 and KM252, as well as their activities with respect to the alteration of the morphology of wheat seedling root hairs. The adsorption dynamics of the parent Sp245 and mutant KM252 strains of azospirilla on the seedling roots of the soft spring wheat cv. Saratovskaya 29 were similar; however, the attachment capacity of the mutant KM252 was lower than that of the parent strain throughout the incubation period (15 min to 48 h). The mutation led to a considerable decrease in the hydrophobicity of the Azospirillumcell surface. The lipopolysaccharides extracted from the outer membrane of A. brasilenseSp245 and mutant cells with hot phenol and purified by chromatographic methods were found to induce the deformation of the wheat seedling root hairs, the lipopolysaccharide of the parent strain being the most active in this respect. The role of the carbohydrate moiety of lipopolysaccharides in the interaction of Azospirillumcells with plants is discussed.  相似文献   
996.
Haems are the cofactors of cytochromes and important catalysts of biological electron transfer. They are composed of a planar porphyrin structure with iron coordinated at the centre. It is known from spectroscopy that ferric low-spin haem has one unpaired electron at the iron, and that this spin is paired as the haem receives an electron upon reduction (I. Bertini, C. Luchinat, NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummins Publ. Co., Menlo Park, CA, 1986, pp. 165-170; H.M. Goff, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part I, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 237-281; G. Palmer, in: A.B.P. Lever, H.B. Gray (Eds.), Iron Porphyrins, Part II, Addison-Wesley Publ. Co., Reading, MA, 1983, pp. 43-88). Here we show by quantum chemical calculations on a haem a model that upon reduction the spin pairing at the iron is accompanied by effective delocalisation of electrons from the iron towards the periphery of the porphyrin ring, including its substituents. The change of charge of the iron atom is only approx. 0.1 electrons, despite the unit difference in formal oxidation state. Extensive charge delocalisation on reduction is important in order for the haem to be accommodated in the low dielectric of a protein, and may have impact on the distance dependence of the rates of electron transfer. The lost individuality of the electron added to the haem on reduction is another example of the importance of quantum mechanical effects in biological systems.  相似文献   
997.
Bispecific single-chain diabodies (scDb) consist of the variable heavy and light chain domains of two antibodies connected by three linkers. The structure of an scDb in the V(H)-V(L) orientation is V(H)A-linkerA-V(L)B-linkerM-V(H)B-linkerB-V(L)A, with linkers A and B routinely chosen to be 5-6 residues and linker M 15-20 residues. Here, we applied display of scDb on filamentous phage to analyse the composition of optimal linker sequences. The three linkers were randomized in length and sequence using degenerated triplets coding for only six hydrophilic or aliphatic amino acids (Thr, Ser, Asp, Asn, Gly, Ala). Antigen-binding clones were then isolated by one to two rounds of selection on the two different antigens recognized by the bispecific scDb. Using an scDb directed against carcinoembryonic antigen (CEA) and beta-galactosidase (Gal), we found that monomeric scDb had a preferred length of 15 or more amino acid residues for the middle linker M and of 3-6 residues for the linkers A and B. No obvious bias towards a preferred linker sequence was observed. Reduction of the middle linker below 13 residues led to the formation of dimeric scDb, which most likely results from interchain pairing between all the V(H) and V(L) domains. Dimeric scDb were also formed by fragments possessing a long linker M and linkers A and B of 0 or 1 residue. We assume that these dimeric scDb are formed by intrachain pairing of the central variable domains and interchain pairing of the flanking variable domains. Thus, the latter molecules represent a novel format of bispecific and tetravalent molecules. The described strategy allows for the isolation of both optimized and minimal linker sequences for the assembly of monomeric or dimeric single-chain diabodies.  相似文献   
998.
Membrane targeting of RecA during genetic transformation   总被引:2,自引:1,他引:1  
Recombination in prokaryotes and eukaryotes is mediated by the RecA family of proteins. Although the interactions between RecA and DNA are well studied, the cellular location of these interactions is not known. Using genetic transformation of Streptococcus pneumoniae as a model system, there was increased expression of a protein, colligrin, and RecA, products of the rec locus during genetic transfer. These proteins formed a complex and were found associated with the membranes of genetically competent cells. With immunoelectron microscopy and subcellular fractionation, we showed that the induction of competence led to the translocation of RecA and colligrin to the membrane and to the formation of clusters of RecA in a colligrin-dependent step. Based on the behaviour of colligrin and RecA during genetic exchange and the numerous proteins in prokaryotes and eukaryotes with domains similar to colligrin, we suggest that there may exist a family of proteins, which gathers macromolecules at specific sites in biological membranes.  相似文献   
999.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
1000.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号