首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   8篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1981年   1篇
排序方式: 共有92条查询结果,搜索用时 78 毫秒
11.
Several natural and synthetic flavone derivatives have been reported to inhibit formation of amyloid fibrils or to remodel existing fibrils. These studies suggest that the numbers and positions of hydroxyl groups on the flavone rings determine their effectiveness as amyloid inhibitors. In many studies the primary method for determining the effectiveness of inhibition is measuring Thioflavin T (ThT) fluorescence. This method demonstrably results in a number of false positives for inhibition. We studied the effects of 265 commercially available flavone derivatives on insulin fibril formation. We enhanced the effectiveness of ThT fluorescence measurements by fitting kinetic curves to obtain halftime of aggregation (t 50). Maximal values of ThT fluorescence varied two fold or more in one third of all cases, but this did not correlate with changes in t 50. Changes in t 50 values were more accurate measures of inhibition of amyloid formation. We showed that without a change in an assay, but just by observing complete kinetic curves it is possible to eliminate numbers of false positive and sometimes even false negative results. Examining the data from all 265 flavones we confirmed previous observations that identified the importance of hydroxyl groups for inhibition. Our evidence suggests the importance of hydroxyl groups at locations 5, 6, 7, and 4’, and the absence of a hydroxyl group at location 3, for inhibiting amyloid formation. However, the main conclusion is that the positions are not additive. The structures and their effects must be thought of in the context of the whole molecule.  相似文献   
12.
13.
Carotenoids are fundamental building blocks of natural light harvesters with convoluted and ultrafast energy deactivation networks. In order to disentangle such complex relaxation dynamics, several studies focused on transient absorption measurements and their dependence on the pump wavelength. However, such findings are inconclusive and sometimes contradictory. In this study, we compare internal conversion dynamics in \(\beta\)-carotene, pumped at the first, second, and third vibronic progression peak. Instead of employing data fitting algorithms based on global analysis of the transient absorption spectra, we apply a fully quantum mechanical model to treat the high-frequency symmetric carbon–carbon (C=C and C–C) stretching modes explicitly. This model successfully describes observed population dynamics as well as spectral line shapes in their time-dependence and allows us to reach two conclusions: Firstly, the broadening of the induced absorption upon excess excitation is an effect of vibrational cooling in the first excited state (\(S_{1}\)). Secondly, the internal conversion rate between the second excited state (\(S_{2}\)) and \(S_{1}\) crucially depends on the relative curve displacement. The latter point serves as a new perspective on solvent- and excitation wavelength-dependent experiments and lifts contradictions between several studies found in literature.  相似文献   
14.
Chromosome 14 is often involved in various chromosome rearrangements, most of them balanced. Human chromosome 14 is acrocentric, so its pericentric inversions are extremely rare (only few cases have been described in the literature). Here we report on a boy with congenital malformations and recombinant chromosome 14 inherited from his mother carrying a pericentric inversion. The proband's G-banded chromosome analysis revealed derivative chromosome 14. Comparative genomic hybridization analysis identified duplication of the terminal part of chromosome 14q ish cgh dup(14)(q32.1qter). This abnormality has been confirmed by custom BAC FISH analysis. His mother's karyotype was 46,XX,inv(14)(p11.2q32.1).  相似文献   
15.
MreB, MreC and MreD are essential cell shape-determining morphogenetic proteins in Gram-positive and in Gram-negative bacteria. While MreB, the bacterial homologue of the eukaryotic cytoskeletal protein actin, has been extensively studied, the roles of MreC and MreD are less well understood. They both are transmembrane proteins. MreC has a predicted single transmembrane domain and the C-terminal part outside the cell membrane. MreC probably functions as a link between the intracellular cytoskeleton and the cell wall synthesizing machinery which is located at the outer surface of the cell membrane. Also proteins involved in cell wall synthesis participate in cell morphogenesis. How these two processes are coordinated is, however, poorly understood. Bacillus subtilis (BS), a non-pathogenic Gram-positive bacterium, is widely used as a model for Gram-positive pathogens, e.g. Staphylococcus aureus (SA). Currently, the structures of MreC from BS and SA are not known. As part of our efforts to elucidate the structure–function relationships of the morphogenetic protein complexes in Gram-positive bacteria, we present the backbone and side chain resonance assignments of the extracytoplasmic domain of MreC from BS.  相似文献   
16.
Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.  相似文献   
17.
18.
Despite the fact that multidrug-resistant Klebsiella sp. strains emerge rapidly (Xu J, et al., Adv. Mater. Res. 268-270:1954-1956, 2011) and bacteriophages have been reported to be useful in controlling these bacteria (Kumari S, Harjai K, Chhibber S, J. Med. Microbiol. 60:205-210, 2011), the complete genome sequences of only five Klebsiella phages (four siphoviruses and one myovirus) can be found in databases. In this paper, we report on the complete genome sequence of Klebsiella sp.-infecting bacteriophage vB_KleM_RaK2. With a genome size of 345,809 bp, this is the second largest myovirus and the largest Klebsiella phage sequenced to date. This phage differs substantially from other myoviruses since 411 out of 534 vB_KleM_RaK2 open reading frames have no known functions and lack any reliable database matches. Comparative analysis of the genome sequence of vB_KleM_RaK2 suggests that this phage forms a distinct phylogenetic branch within the family Myoviridae of tailed bacteriophages.  相似文献   
19.
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.  相似文献   
20.
It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysiologically identical to the CaMKII-activated CLC-3 conductance in nonneuronal cells, and is absent in clc-3(-/-) mice. Systematically decreasing [Cl(-)](i) to mimic postnatal [Cl(-)](i) regulation progressively decreases the amplitude and decay time constant of spontaneous mEPSPs. This Cl(-)-dependent change in synaptic strength is absent in clc-3(-/-) mice. Using surface biotinylation, immunohistochemistry, electron microscopy, and coimmunoprecipitation studies, we find that CLC-3 channels are localized on the plasma membrane, at postsynaptic sites, and in association with NMDA receptors. This is the first demonstration that a voltage-dependent chloride conductance modulates neuronal excitability. By increasing postsynaptic potentials in a Cl(-) dependent fashion, CLC-3 channels regulate neuronal excitability postsynaptically in immature neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号