首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   34篇
  2023年   1篇
  2022年   9篇
  2021年   12篇
  2020年   3篇
  2019年   6篇
  2018年   25篇
  2017年   15篇
  2016年   16篇
  2015年   17篇
  2014年   19篇
  2013年   18篇
  2012年   30篇
  2011年   17篇
  2010年   17篇
  2009年   15篇
  2008年   20篇
  2007年   26篇
  2006年   18篇
  2005年   24篇
  2004年   14篇
  2003年   18篇
  2002年   15篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1980年   3篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
71.
72.
Fat storage‐inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)‐localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension‐cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER‐LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER‐vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.  相似文献   
73.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod phosphorylation in catch muscle, a peptide corresponding to the specific N-terminal region of the protein was synthesized in phosphorylated and unphosphorylated form. We report, for the first time, that unphosphorylated full-length myorod and its unphosphorylated N-terminal synthetic peptide are able to interact with rabbit F-actin and thin filaments from molluscan catch muscle. The binding between thin filaments and the peptide was Ca2+-dependent. In addition, we found that phosphorylated N-terminal peptide of myorod has higher affinity for myosin compared to the unphosphorylated peptide. Together, these observations suggest the direct involvement of the N-terminal domain of myorod in the regulation of molluscan catch muscle.  相似文献   
74.
2,4,6-Triphenyldioxane-1,3 (TPD) is a highly effective species-specific inducer of CYP2В in rats. Several analogs of TPD were synthesized to verify a hypothesis that minor changes in the inducer structure can cause changes in induction abilities (R = H, cisTPD and transTPD; R = N(CH3)2, transpDMA; R = NO2, transpNO2; R = F, transpF; R = OCH3, transpMeO). Five of six compounds were able to activate CAR in rat liver. Results of Western-blot and ChIP showed that cisTPD and transTPD, transpDMA, transpNO2, transpF treatment stimulated nuclear accumulation of CAR and evoked CAR receptor PBREM-binding activity in rat liver. cisTPD, transTPD, transpDMA, transpNO2 and transpF administration significantly increased total CYP content (1.3–2.5 fold) and the level of PROD (12–20 fold), CYP2B specific activity, whereas transpMeO did not have any effects. Western blot and real-time RT-PCR showed that the increase of PROD in liver is related to the high content of CYP2B proteins and paralleled the increase of CYP2B1 (10–43 fold) and CYP2B2 (8–26 fold) mRNAs. At the same time content of CYP2B proteins and CYP2B1 and CYP2B2 mRNA levels were unchanged in rat liver after transpMeO treatment. The dose–response studies have shown that cisTPD, transpDMA, transpF and transpNO2 have similar potency, and transTPD is less potent derivative. Moreover, it is likely transTPD act as a partial CAR activator. Thus, our results provide evidence to support the conclusion that the differences of TPD analogs ability to activate CYP2B gene expression can be explained by various interactions with CAR.  相似文献   
75.
Lactobacillus crispatus 2029 isolated upon investigation of vaginal lactobacilli of healthy women of reproductive age was selected as a probiotic candidate. The aim of the present study was elucidation of the role of L. crispatus 2029 in resistance of the female reproductive tract to genitourinary pathogens using cervicovaginal epithelial model. Lactobacillus crispatus 2029 has surface layers (S-layers), which completely surround cells as the outermost component of their envelope. S-layers are responsible for the adhesion of lactobacilli on the surface of cervicovaginal epithelial cells. Study of interactions between L. crispatus 2029 and a type IV collagen, a major molecular component of epithelial cell extracellular matrix, showed that 125I-labeled type IV collagen binds to lactobacilli with high affinity (Kd = (8.0 ± 0.7) × 10?10 M). Lactobacillus crispatus 2029 consistently colonized epithelial cells. There were no toxicity, epithelial damage and apoptosis after 24 h of colonization. Electronic microscope images demonstrated intimate association between L. crispatus 2029 and epithelial cells. Upon binding to epithelial cells, lactobacilli were recognized by toll-like 2/6 receptors. Lactobacillus crispatus induced NF-κB activation in epithelial cells and did not induce expression of innate immunity mediators IL-8, IL-1β, IL-1α and TNF-α. Lactobacillus crispatus 2029 inhibited IL-8 production in epithelial cells induced by MALP-2 and increased production of anti-inflammatory cytokine IL-6, maintaining the homeostasis of female reproductive tract. Lactobacillus crispatus 2029 produced H2O2 and provided wide spectrum of antagonistic activity increasing colonization resistance to urinary tract infections by bacterial vaginosis and vulvovaginal candidiasis associated agents.  相似文献   
76.
77.
We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate equations, whose parameters are characterized by the utility of each group with respect to the society as a whole and by the mutual utilities of groups with respect to each other. We analyze in detail the cases of two groups (cooperators and defectors) and of three groups (cooperators, defectors, and regulators) and find that, in a self-organized society, neither defectors nor regulators can overpass the maximal fractions of about each. This is in agreement with the data for bee and ant colonies. The classification of societies by their distance from equilibrium is proposed. We apply the formalism to rank the countries according to the introduced metric quantifying their relative stability, which depends on the cost of defectors and regulators as well as their respective population fractions. We find a remarkable concordance with more standard economic ranking based, for instance, on GDP per capita.  相似文献   
78.
Recent ancient DNA (aDNA) studies of human pathogens have provided invaluable insights into their evolutionary history and prevalence in space and time. Most of these studies were based on DNA extracted from teeth or postcranial bones. In contrast, no pathogen DNA has been reported from the petrous bone which has become the most desired skeletal element in ancient DNA research due to its high endogenous DNA content. To compare the potential for pathogenic aDNA retrieval from teeth and petrous bones, we sampled these elements from five ancient skeletons, previously shown to be carrying Yersinia pestis. Based on shotgun sequencing data, four of these five plague victims showed clearly detectable levels of Y. pestis DNA in the teeth, whereas all the petrous bones failed to produce Y. pestis DNA above baseline levels. A broader comparative metagenomic analysis of teeth and petrous bones from 10 historical skeletons corroborated these results, showing a much higher microbial diversity in teeth than petrous bones, including pathogenic and oral microbial taxa. Our results imply that although petrous bones are highly valuable for ancient genomic analyses as an excellent source of endogenous DNA, the metagenomic potential of these dense skeletal elements is highly limited. This trade‐off must be considered when designing the sampling strategy for an aDNA project.  相似文献   
79.
On the basis of experimental studies of the initial stages of glycine oligomerization in aqueous suspension of zeolite and kaolinite catalysts, a model is suggested for the prebiotic synthesis of oligopeptides from -amino acids. The formation of linear dipeptides by hydrolysis of one amide bond in the cyclic piperazinedione intermediate (formed from glycine spontaneously) is found to be the critical stage of the reaction. This stage is base catalyzed and its rate increases when pH of the medium goes up. The linear glycyl-glycine yield rises under effect of hydroxyl anions generated from different sources including insoluble silicates and soluble sodium bicarbonate. During prebiotic evolution silicates capable of cation-exchange can serve as local sources of the hydroxyl anions which dramatically accelerate formation of linear dipeptides from cyclic ones. Oligopeptides of higher molecular weight are then easily formed from the linear dipeptides at neutral pH, even in the absence of catalysts or sources of energy (e.g. such as light). The described catalytic synthesis could occur in the proximity of submarine hydrothermal vents.  相似文献   
80.
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite''s carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号