首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   34篇
  2023年   1篇
  2022年   7篇
  2021年   12篇
  2020年   3篇
  2019年   6篇
  2018年   25篇
  2017年   15篇
  2016年   16篇
  2015年   17篇
  2014年   19篇
  2013年   18篇
  2012年   30篇
  2011年   17篇
  2010年   17篇
  2009年   15篇
  2008年   20篇
  2007年   26篇
  2006年   18篇
  2005年   24篇
  2004年   14篇
  2003年   18篇
  2002年   15篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1980年   3篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有410条查询结果,搜索用时 46 毫秒
141.
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.

The lipid droplet (LD) proteins LDIP and LDAP cooperate with endoplasmic reticulum-localized SEIPIN to coordinate LD formation in plant cells.  相似文献   
142.
143.
Three new species of monoxenous parasites from the Neotropical Heteroptera are described on the basis of the ultrastructure of cells in culture, as well as gene sequences of Spliced Leader (SL) RNA, glyceraldehyde phosphate dehydrogenase (GAPDH) and small subunit (SSU) rRNA. The results have highlighted a striking discrepancy between the morphological (dis)similarities and the phylogenetic affinities among the insect trypanosomatids. Although each of the new species is characterized by a distinct set of morphological characters, based on the predominant promastigotes observed in culture, each of them has been provisionally assigned to the genus Leptomonas pending the future revision of this genus. Yet, instead of the phylogenetic affinity with the other members of this polyphyletic genus, the new species are most closely related to Crithidia species. Thus, the extremely long promastigotes of Leptomonas acus sp. n. and the unique morphological features found in Leptomonas bifurcata sp. n. sharply contrast with their respective relatives C. fasciculata and C. deanei both of which are typical choanomastigotes. The results clearly show that the current classification at the genus level is misleading and needs to be revised. The phylogenetic clades potentially representing the candidate new genera of monoxenous trypanosomatids have started to emerge from the presented analyses.  相似文献   
144.
Heat stress: an overview of molecular responses in photosynthesis   总被引:6,自引:0,他引:6  
The primary targets of thermal damage in plants are the oxygen evolving complex along with the associated cofactors in photosystem II (PSII), carbon fixation by Rubisco and the ATP generating system. Recent investigations on the combined action of moderate light intensity and heat stress suggest that moderately high temperatures do not cause serious PSII damage but inhibit the repair of PSII. The latter largely involves de novo synthesis of proteins, particularly the D1 protein of the photosynthetic machinery that is damaged due to generation of reactive oxygen species (ROS), resulting in the reduction of carbon fixation and oxygen evolution, as well as disruption of the linear electron flow. The attack of ROS during moderate heat stress principally affects the repair system of PSII, but not directly the PSII reaction center (RC). Heat stress additionally induces cleavage and aggregation of RC proteins; the mechanisms of such processes are as yet unclear. On the other hand, membrane linked sensors seem to trigger the accumulation of compatible solutes like glycinebetaine in the neighborhood of PSII membranes. They also induce the expression of stress proteins that alleviate the ROS-mediated inhibition of repair of the stress damaged photosynthetic machinery and are required for the acclimation process. In this review we summarize the recent progress in the studies of molecular mechanisms involved during moderate heat stress on the photosynthetic machinery, especially in PSII.  相似文献   
145.
Polymorphic variants in the myostatin, prolactin, and D2 dopamine receptor genes were analyzed in Pushkin breed chickens (n = 231). The rs313744840 single nucleotide polymorphism was studied in the myostatin gene by means of the PCR–RFLP method. The cocks with different genotypes did not differ from each other by the live weight. Chickens with AA genotype were found to be significantly larger than their coevals with AG and GG genotypes at the age of 49 days (P < 0.01). Polymorphism based on the insertion–deletion of a small gene region (indel-polymorphism) was considered in the prolactin and D2 dopamine receptor genes. Differences by the prolactin gene were observed at 7 days of age. The cocks homozygous by the DD deletion were significantly larger than heterozygous ID coevals (P < 0.05). The II cocks significantly differed by the D2 dopamine receptor gene from heterozygous ID coevals by the live weight at 49 and 110 days. In chickens, II homozygotes by the mutation in the D2 dopamine receptor gene were larger than coevals at 7 days, while they had a lower live weight at 110 days (P < 0.05).  相似文献   
146.
Increasing inefficiency of production of important agricultural plants raises one of the biggest problems in the modern world. Herbicide application is still the best method of weed management. Traditional herbicides blocking only one of the plant metabolic pathways is ineffective due to the rapid growth of herbicide-resistant weeds. The synthesis of novel compounds effectively suppressing several metabolic processes, and therefore achieving the synergism effect would serve as the alternative approach to weed problem. For this reason, recently, we synthesized a series of nine novel Cu(II) complexes and four ligands, characterized them with different analyses techniques, and carried out their primary evaluation as inhibitors of photosynthetic electron transfer in spinach thylakoids (design, synthesis, and evaluation of a series of Cu(II) based metal–organic complexes as possible inhibitors of photosynthesis, J Photochem Photobiol B, submitted). Here, we evaluated in vitro inhibitory potency of these agents against: photochemistry and carbonic anhydrase activity of photosystem II (PSII); α-carbonic anhydrase from bovine erythrocytes; as well as glutathione reductase from chloroplast and baker’s yeast. Our results show that all Cu(II) complexes excellently inhibit glutathione reductase and PSII carbonic anhydrase activity. Some of them also decently inhibit PSII photosynthetic activity.  相似文献   
147.
Eleven polymorphic microsatellite markers have been developed for the brown anole, Anolis sagrei. The number of alleles range from five to 14 per locus with the observed heterozygosity ranging from 0.46 to 0.92. These markers will be useful for analysis of questions concerning population genetic structure and reproductive behaviour.  相似文献   
148.
149.
Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.  相似文献   
150.
The gas hydrate-bearing structure—mud volcano Kedr-1 (Lake Baikal, southern basin)—is located near the coal-bearing sediments of the Tankhoy formation of Oligocene–Miocene age and can be an ideal source of gas-saturated fluid. A significant amount of siderite minerals (FeCO3) were collected from sediments at depths ranging from 0.5 to 327 cm below the lake floor (cmblf). An important feature of these carbonate minerals is the extremely strong enrichment in the heavy 13C isotope, reaching values of +33.3‰ VPDB. The δ13C of the siderite minerals, as well as their morphology and elemental composition, and the δ13CDIC of the co-existing pore water, differed across layers of the core, which implies at least two generations of siderite formation. Here, we leverage mineralogical and geochemical data with 16S rRNA data from the microbial communities in sediments surrounding layers containing siderite minerals. Statistical data reveal the formation of three clusters of microbial communities based on taxonomical composition, key taxa among bacteria and archaea, and environmental parameters. Diversity and richness estimators decrease with sediment depth, with several similar prevailing clades located at the bottom of the core. Most of the taxa in the deep sediments could be associated with putative metabolisms involving organotrophic fermentation (Bathyarchaeia, Caldatribacteriota, and Chloroflexota). Various groups of methanogens (Methanoregulaceae, Methanosaetaceae, and Methanomassiliicoccales) and methanotrophic (Methanoperedenaceae) archaea are present in the sediment at variable relative abundances throughout the sampled depth. Based on the physicochemical characteristics of the sediment, carbon isotope analysis of carbonate minerals and DIC, and phylogenetic analysis of individual taxa and their metabolic potential, we present several models for subsurface siderite precipitation in Lake Baikal sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号