首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   28篇
  316篇
  2023年   1篇
  2022年   11篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   16篇
  2017年   5篇
  2016年   12篇
  2015年   14篇
  2014年   17篇
  2013年   12篇
  2012年   23篇
  2011年   14篇
  2010年   14篇
  2009年   11篇
  2008年   19篇
  2007年   25篇
  2006年   19篇
  2005年   21篇
  2004年   9篇
  2003年   14篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   3篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有316条查询结果,搜索用时 0 毫秒
91.
Polyenoylphosphatidylcholine (PPC: 100 or 300 mg kg?1 b.w., by gastric intubation for 30 days) produced a clearcut protection of the liver of rats treated with alloxan (150 mg kg?1 b.w., i.p.). The liver of rats treated with alloxan was characterized by hydropic dystrophy and lymphocytic infiltrations. Treatment with alloxan increased serum γ-GT and ALAT activities. The liver structure of rats treated with PPC did not differ from the liver of control animals. PPC normalized the biochemical abnormalities caused by the diabetes. The number of pancreatic islets and β/α; cell ratio decreased in the diabetic rats. A number of β-cells in this group did not contain granules. PPC prevented the decrease in the number of islets and the β/α; cell ratio in the pancreas of the diabetic rats. The intensity of staining of β-cell granules in the pancreas of PPC-treated rats had a position intermediate between the control and diabetic groups. Alloxan increased the blood glucose content where treatment with PPC decreased this. The results suggest that PPC acts as a cytoprotector in the liver and pancreas of rats with experimental diabetes induced by alloxan.  相似文献   
92.
The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus.  相似文献   
93.
Humanin (HN), a 24‐amino acid peptide encoded by the mitochondrial 16S rRNA gene, was discovered by screening a cDNA library from the occipital cortex of a patient with Alzheimer's disease (AD) for a protection factor against AD‐relevant insults. Earlier, using the yeast two‐hybrid system, we have identified the M‐phase phosphoprotein 8 (MPP8) as a binding partner for HN. In the present work, we further confirmed interaction of HN with MPP8 in co‐immunoprecipitation experiments and localized an MPP8‐binding site in the region between 5 and 12 aa. of HN. We have also shown that an MPP8 fragment (residues 431–560) is sufficient to bind HN. Further studies on functional consequences of the interaction between the potential oncopetide and the oncoprotein may elucidate some aspects of the molecular mechanisms of carcinogenesis. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
94.
95.
96.
97.
98.
The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.  相似文献   
99.
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called “Great Oxygenation Event” that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号