首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   28篇
  309篇
  2023年   1篇
  2022年   10篇
  2021年   7篇
  2020年   2篇
  2019年   4篇
  2018年   16篇
  2017年   5篇
  2016年   12篇
  2015年   14篇
  2014年   17篇
  2013年   12篇
  2012年   21篇
  2011年   14篇
  2010年   13篇
  2009年   11篇
  2008年   19篇
  2007年   24篇
  2006年   18篇
  2005年   20篇
  2004年   9篇
  2003年   14篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   3篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
41.
The involvement of galectins as pleiotropic regulators of cell adhesion and growth in disease progression explains the interest to define their ligand-binding properties. Toward this end, it is desirable to approach in vivo conditions to attain medical relevance. In order to simulate physiological conditions with cell surface glycans as recognition sites and galectins as mediators of intercellular contacts we developed an assay using galectin-loaded Raji cells. The extent of surface binding of fluorescent neoglycoconjugates depended on the lectin presence and the type of lectin, the nature of the probes' carbohydrate headgroup and the density of unsubstituted beta-galactosides on the cell surface. Using the most frequently studied galectins-1 and -3, application of this assay led to rather equal binding levels for linear and branched oligomers of N-acetyllactosamine. A clear preference of galectin-3 for alpha1-3-linked galactosylated lactosamine was noted. In parallel, a panel of 24 neoglycoconjugates was tested as inhibitors of galectin binding from solution to N-glycans of surface-immobilized asialofetuin. These two assays differ in presentation of the galectin and ligand, facilitating identification of assay-dependent properties. Under the condition of the cell assay, selectivity among oligosaccharides for the lectins was higher, and extraordinary affinity of galectin-1 to 3'-O-sulfated probes in a solid-phase assay was lost in the cell assay. Having introduced and validated a cell assay, the comprehensive profiling of ligand binding to cell-surface-presented galectins is made possible.  相似文献   
42.
43.
Germanium vs Silicon: All‐dielectric nanoparticles provides the heat resistance for proteins under light‐induced heating. Further details can be found in the article by Andrei A. Krasilin et al. ( e201700322 )

  相似文献   

44.
Interaction between nanoparticles and biomolecules leads to the formation of biocompatible or bioadverse complexes. Despite the rapid development of nanotechnologies for biology and medicine, relatively little is known about the structure of such complexes. Here, we report on the changes in conformation of a blood protein (bovine serum albumin) adsorbed on the surface of single all‐dielectric nanoparticles (silicon and germanium) following light‐induced heating to 640 K. This protein is considerably more resistant to heat when adsorbed on the nanoparticle than when in solution or in the solid state. Intriguingly, with germanium nanoparticles this heat resistance is more pronounced than with silicon. These observations will facilitate biocompatible usage of all‐dielectric nanoparticles.   相似文献   
45.
Savchenko  Tatyana  Yanykin  Denis  Khorobrykh  Andrew  Terentyev  Vasily  Klimov  Vyacheslav  Dehesh  Katayoon 《Planta》2017,245(6):1179-1192
Main conclusion

This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions.

Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites—does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.

  相似文献   
46.
47.
48.
49.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod phosphorylation in catch muscle, a peptide corresponding to the specific N-terminal region of the protein was synthesized in phosphorylated and unphosphorylated form. We report, for the first time, that unphosphorylated full-length myorod and its unphosphorylated N-terminal synthetic peptide are able to interact with rabbit F-actin and thin filaments from molluscan catch muscle. The binding between thin filaments and the peptide was Ca2+-dependent. In addition, we found that phosphorylated N-terminal peptide of myorod has higher affinity for myosin compared to the unphosphorylated peptide. Together, these observations suggest the direct involvement of the N-terminal domain of myorod in the regulation of molluscan catch muscle.  相似文献   
50.
2,4,6-Triphenyldioxane-1,3 (TPD) is a highly effective species-specific inducer of CYP2В in rats. Several analogs of TPD were synthesized to verify a hypothesis that minor changes in the inducer structure can cause changes in induction abilities (R = H, cisTPD and transTPD; R = N(CH3)2, transpDMA; R = NO2, transpNO2; R = F, transpF; R = OCH3, transpMeO). Five of six compounds were able to activate CAR in rat liver. Results of Western-blot and ChIP showed that cisTPD and transTPD, transpDMA, transpNO2, transpF treatment stimulated nuclear accumulation of CAR and evoked CAR receptor PBREM-binding activity in rat liver. cisTPD, transTPD, transpDMA, transpNO2 and transpF administration significantly increased total CYP content (1.3–2.5 fold) and the level of PROD (12–20 fold), CYP2B specific activity, whereas transpMeO did not have any effects. Western blot and real-time RT-PCR showed that the increase of PROD in liver is related to the high content of CYP2B proteins and paralleled the increase of CYP2B1 (10–43 fold) and CYP2B2 (8–26 fold) mRNAs. At the same time content of CYP2B proteins and CYP2B1 and CYP2B2 mRNA levels were unchanged in rat liver after transpMeO treatment. The dose–response studies have shown that cisTPD, transpDMA, transpF and transpNO2 have similar potency, and transTPD is less potent derivative. Moreover, it is likely transTPD act as a partial CAR activator. Thus, our results provide evidence to support the conclusion that the differences of TPD analogs ability to activate CYP2B gene expression can be explained by various interactions with CAR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号