首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   52篇
  512篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   18篇
  2020年   9篇
  2019年   13篇
  2018年   10篇
  2017年   6篇
  2016年   18篇
  2015年   36篇
  2014年   38篇
  2013年   33篇
  2012年   43篇
  2011年   41篇
  2010年   26篇
  2009年   15篇
  2008年   29篇
  2007年   35篇
  2006年   17篇
  2005年   14篇
  2004年   23篇
  2003年   18篇
  2002年   18篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1982年   2篇
  1979年   1篇
排序方式: 共有512条查询结果,搜索用时 12 毫秒
301.
In the present work, the promoter of the Arabidopsis thaliana nuclear gene COX5b-1, encoding subunit 5b of the mitochondrial cytochrome c oxidase, has been analysed. For this purpose, plants, stably transformed with different promoter fragments fused to the beta-glucuronidase reporter gene, have been obtained. Histochemical staining indicated that the COX5b-1 promoter directs expression in meristems and in vascular tissues of cotyledons, roots, and hypocotyls, as well as in anthers and pollen and the central leaf vein. Quantitative measurements in extracts prepared from different organs suggested that expression is higher in roots. The analysis of progressive upstream deletions of the promoter suggested the presence of negative regulatory elements, preferentially active in leaves, between nucleotides -609 and -387 from the translation start site. A further deletion down to nucleotide -195 completely abolished expression. The inclusion of sucrose or the cytokinin 6-benzylaminopurine in the culture medium induced COX5b-1 promoter-dependent beta-glucuronidase expression. This induction was observed with all constructs that produced beta-glucuronidase activity. Putative regulatory elements involved in the regulation of other genes were detected in the promoter fragment required for expression. A detailed analysis of these elements will help to elucidate the molecular mechanisms that participate in the expression of this and, possibly, other components of the cytochrome c-dependent respiratory pathway.  相似文献   
302.
303.
In a longitudinal study in a Finnish cattle finishing unit we investigated excretion and sources of Escherichia coli O157 in bulls from postweaning until slaughter. Three groups of 31 to 42 calves were sampled in a calf transporter before they entered the farm and four to seven times at approximately monthly intervals at the farm. All calves sampled in the livestock transporter were negative for E. coli O157 on arrival, whereas positive animals were detected 1 day later. During the fattening period the E. coli O157 infection rate varied between 0 and 38.5%. The animals were also found to be shedding during the cold months. E. coli O157 was isolated from samples taken from water cups, floors, and feed passages. E. coli O157 was detected in 9.7 to 38.9% of the fecal samples taken at slaughter, while only two rumen samples and one carcass surface sample were found to be positive. E. coli O157 was isolated from barn surface samples more often when the enrichment time was 6 h than when the enrichment time was 24 h (P < 0.0001). Fecal samples taken at the abattoir had lower counts (< or = 0.4 MPN/g) than fecal samples at the farm (P < 0.05). E. coli O157 was isolated more often from 10-g fecal samples than from 1-g fecal samples (P < 0.0001). Most farm isolates belonged to one pulsed-field gel electrophoresis (PFGE) genotype (79.6%), and the rest belonged to closely related PFGE genotypes. In conclusion, this study indicated that the finishing unit rather than introduction of new cattle was the source of E. coli O157 at the farm and that E. coli O157 seemed to persist well on barn surfaces.  相似文献   
304.
Although increased disease severity driven by intensive farming practices is problematic in food production, the role of evolutionary change in disease is not well understood in these environments. Experiments on parasite evolution are traditionally conducted using laboratory models, often unrelated to economically important systems. We compared how the virulence, growth and competitive ability of a globally important fish pathogen, Flavobacterium columnare, change under intensive aquaculture. We characterized bacterial isolates from disease outbreaks at fish farms during 2003–2010, and compared F. columnare populations in inlet water and outlet water of a fish farm during the 2010 outbreak. Our data suggest that the farming environment may select for bacterial strains that have high virulence at both long and short time scales, and it seems that these strains have also evolved increased ability for interference competition. Our results are consistent with the suggestion that selection pressures at fish farms can cause rapid changes in pathogen populations, which are likely to have long-lasting evolutionary effects on pathogen virulence. A better understanding of these evolutionary effects will be vital in prevention and control of disease outbreaks to secure food production.  相似文献   
305.
306.
Salt-bridge interactions between acidic and basic amino acids contribute to the structural stability of proteins and to protein–protein interactions. A conserved salt-bridge is a canonical feature of the α-defensin antimicrobial peptide family, but the role of this common structural element has not been fully elucidated. We have investigated mouse Paneth cell α-defensin cryptdin-4 (Crp4) and peptide variants with mutations at Arg7 or Glu15 residue positions to disrupt the salt-bridge and assess the consequences on Crp4 structure, function, and stability. NMR analyses showed that both (R7G)-Crp4 and (E15G)-Crp4 adopt native-like structures, evidence of fold plasticity that allows peptides to reshuffle side chains and stabilize the structure in the absence of the salt-bridge. In contrast, introduction of a large hydrophobic side chain at position 15, as in (E15L)-Crp4 cannot be accommodated in the context of the Crp4 primary structure. Regardless of which side of the salt-bridge was mutated, salt-bridge variants retained bactericidal peptide activity with differential microbicidal effects against certain bacterial cell targets, confirming that the salt-bridge does not determine bactericidal activity per se. The increased structural flexibility induced by salt-bridge disruption enhanced peptide sensitivity to proteolysis. Although sensitivity to proteolysis by MMP7 was unaffected by most Arg7 and Glu15 substitutions, every salt-bridge variant was degraded extensively by trypsin. Moreover, the salt-bridge facilitates adoption of the characteristic α-defensin fold as shown by the impaired in vitro refolding of (E15D)-proCrp4, the most conservative salt-bridge disrupting replacement. In Crp4, therefore, the canonical α-defensin salt-bridge facilitates adoption of the characteristic α-defensin fold, which decreases structural flexibility and confers resistance to degradation by proteinases.  相似文献   
307.
We studied the role of cytochrome c (CYTc), which mediates electron transfer between Complexes III and IV, in cellular events related with mitochondrial respiration, plant development and redox homeostasis. We analyzed single and double homozygous mutants in both CYTc-encoding genes from Arabidopsis: CYTC-1 and CYTC-2. While individual mutants were similar to wild-type, knock-out of both genes produced an arrest of embryo development, showing that CYTc function is essential at early stages of plant development. Mutants in which CYTc levels were extremely reduced respective to wild-type had smaller rosettes with a pronounced decrease in parenchymatic cell size and an overall delay in development. Mitochondria from these mutants had lower respiration rates and a relative increase in alternative respiration. Furthermore, the decrease in CYTc severely affected the activity and the amount of Complex IV, without affecting Complexes I and III. Reactive oxygen species levels were reduced in these mutants, which showed induction of genes encoding antioxidant enzymes. Ascorbic acid levels were not affected, suggesting that a small amount of CYTc is enough to support its normal synthesis. We postulate that, in addition to its role as an electron carrier between Complexes III and IV, CYTc influences Complex IV levels in plants, probably reflecting a role of this protein in Complex IV stability. This double function of CYTc most likely explains why it is essential for plant survival.  相似文献   
308.
309.
Parasites provide a selective pressure during the evolution of their hosts, and mediate a range of effects on ecological communities. Due to their short generation time, host-parasite interactions may also drive the virulence of opportunistic bacteria. This is especially relevant in systems where high densities of hosts and parasites on different trophic levels (e.g. vertebrate hosts, their bacterial pathogens, and virus parasitizing bacteria) co-exist. In farmed salmonid fingerlings, Flavobacterium columnare is an emerging pathogen, and phage that infect F. columnare have been isolated. However, the impact of these phage on their host bacterium is not well understood. To study this, four strains of F. columnare were exposed to three isolates of lytic phage and the development of phage resistance and changes in colony morphology were monitored. Using zebrafish (Danio rerio) as a model system, the ancestral rhizoid morphotypes were associated with a 25–100% mortality rate, whereas phage-resistant rough morphotypes that lost their virulence and gliding motility (which are key characteristics of the ancestral types), did not affect zebrafish survival. Both morphotypes maintained their colony morphologies over ten serial passages in liquid culture, except for the low-virulence strain, Os06, which changed morphology with each passage. To our knowledge, this is the first report of the effects of phage-host interactions in a commercially important fish pathogen where phage resistance directly correlates with a decline in bacterial virulence. These results suggest that phage can cause phenotypic changes in F. columnare outside the fish host, and antagonistic interactions between bacterial pathogens and their parasitic phage can favor low bacterial virulence under natural conditions. Furthermore, these results suggest that phage-based therapies can provide a disease management strategy for columnaris disease in aquaculture.  相似文献   
310.
Only a few archaeal viruses have been subjected to detailed structural analyses. Major obstacles have been the extreme conditions such as high salinity or temperature needed for the propagation of these viruses. In addition, unusual morphotypes of many archaeal viruses have made it difficult to obtain further information on virion architectures. We used controlled virion dissociation to reveal the structural organization of Halorubrum pleomorphic virus 1 (HRPV-1) infecting an extremely halophilic archaeal host. The single-stranded DNA genome is enclosed in a pleomorphic membrane vesicle without detected nucleoproteins. VP4, the larger major structural protein of HRPV-1, forms glycosylated spikes on the virion surface and VP3, the smaller major structural protein, resides on the inner surface of the membrane vesicle. Together, these proteins organize the structure of the membrane vesicle. Quantitative lipid comparison of HRPV-1 and its host Halorubrum sp. revealed that HRPV-1 acquires lipids nonselectively from the host cell membrane, which is typical of pleomorphic enveloped viruses.In recent years there has been growing interest in viruses infecting hosts in the domain Archaea (43). Archaeal viruses were discovered 35 years ago (52), and today about 50 such viruses are known (43). They represent highly diverse virion morphotypes in contrast to the vast majority (96%) of head-tail virions among the over 5,000 described bacterial viruses (1). Although archaea are widespread in both moderate and extreme environments (13), viruses have been isolated only for halophiles and anaerobic methanogenes of the kingdom Euryarchaeota and hyperthermophiles of the kingdom Crenarchaeota (43).In addition to soil and marine environments, high viral abundance has also been detected in hypersaline habitats such as salterns (i.e., a multipond system where seawater is evaporated for the production of salt) (19, 37, 50). Archaea are dominant organisms at extreme salinities (36), and about 20 haloarchaeal viruses have been isolated to date (43). The majority of these are head-tail viruses, whereas electron microscopic (EM) studies of highly saline environments indicate that the two other described morphotypes, spindle-shaped and round particles, are the most abundant ones (19, 37, 43). Thus far, the morphological diversity of the isolated haloarchaeal viruses is restricted compared to viruses infecting hyperthermophilic archaea, which are classified into seven viral families (43).All of the previously described archaeal viruses have a double-stranded DNA (dsDNA) genome (44). However, a newly characterized haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1), has a single-stranded DNA (ssDNA) genome (39). HRPV-1 and its host Halorubrum sp. were isolated from an Italian (Trapani, Sicily) solar saltern. Most of the studied haloarchaeal viruses lyse their host cells, but persistent infections are also typical (40, 44). HRPV-1 is a nonlytic virus that persists in the host cells. In liquid propagation, nonsynchronous infection cycles of HRPV-1 lead to continuous virus production until the growth of the host ceases, resulting in high virus titers in the growth medium (39).The pleomorphic virion of HRPV-1 represents a novel archaeal virus morphotype constituted of lipids and two major structural proteins VP3 (11 kDa) and VP4 (65 kDa). The genome of HRPV-1 is a circular ssDNA molecule (7,048 nucleotides [nt]) containing nine putative open reading frames (ORFs). Three of them are confirmed to encode structural proteins VP3, VP4, and VP8, which is a putative ATPase (39). The ORFs of the HRPV-1 genome show significant similarity, at the amino acid level, to the minimal replicon of plasmid pHK2 of Haloferax sp. (20, 39). Furthermore, an ∼4-kb region, encoding VP4- and VP8-like proteins, is found in the genomes of two haloarchaea, Haloarcula marismortui and Natronomonas pharaonis, and in the linear dsDNA genome (16 kb) of spindle-shaped haloarchaeal virus His2 (39). The possible relationship between ssDNA virus HRPV-1 and dsDNA virus His2 challenges the classification of viruses, which is based on the genome type among other criteria (15, 39).HRPV-1 is proposed to represent a new lineage of pleomorphic enveloped viruses (39). A putative representative of this lineage among bacterial viruses might be L172 of Acholeplasma laidlawii (14). The enveloped virion of L172 is pleomorphic, and the virus has a circular ssDNA genome (14 kb). In addition, the structural protein pattern of L172 with two major structural proteins, of 15 and 53 kDa, resembles that of HRPV-1.The structural approach has made it possible to reveal relationships between viruses where no sequence similarity can be detected. It has been realized that several icosahedral viruses infecting hosts in different domains of life share common virion architectures and folds of their major capsid proteins. These findings have consequences for the concept of the origin of viruses. A viral lineage hypothesis predicts that viruses within the same lineage may have a common ancestor that existed before the separation of the cellular domains of life (3, 5, 8, 26). Currently, limited information is available on the detailed structures of viruses infecting archaea. For example, the virion structures of nontailed icosahedral Sulfolobus turreted icosahedral virus (STIV) and SH1 have been determined (21, 23, 46). However, most archaeal viruses represent unusual, sometimes nonregular, morphotypes (43), which makes it difficult to apply structural methods that are based on averaging techniques.A biochemical approach, i.e., controlled virion dissociation, gives information on the localization and interaction of virion components. In the present study, controlled dissociation was used to address the virion architecture of HRPV-1. A comparative lipid analysis of HRPV-1 and its host was also carried out. Our results show that the unique virion type is composed of a flexible membrane decorated with the glycosylated spikes of VP4 and internal membrane protein VP3. The circular ssDNA genome resides inside the viral membrane vesicle without detected association to any nucleoproteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号