首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7521篇
  免费   659篇
  国内免费   4篇
  8184篇
  2023年   58篇
  2022年   142篇
  2021年   273篇
  2020年   147篇
  2019年   176篇
  2018年   199篇
  2017年   160篇
  2016年   335篇
  2015年   509篇
  2014年   521篇
  2013年   532篇
  2012年   754篇
  2011年   645篇
  2010年   375篇
  2009年   363篇
  2008年   489篇
  2007年   417篇
  2006年   375篇
  2005年   287篇
  2004年   288篇
  2003年   263篇
  2002年   238篇
  2001年   54篇
  2000年   30篇
  1999年   39篇
  1998年   60篇
  1997年   31篇
  1996年   22篇
  1995年   27篇
  1994年   23篇
  1993年   27篇
  1992年   23篇
  1991年   19篇
  1990年   14篇
  1989年   21篇
  1988年   12篇
  1987年   9篇
  1986年   10篇
  1985年   12篇
  1984年   15篇
  1983年   24篇
  1982年   8篇
  1981年   16篇
  1980年   13篇
  1979年   11篇
  1978年   15篇
  1977年   10篇
  1976年   9篇
  1975年   9篇
  1974年   8篇
排序方式: 共有8184条查询结果,搜索用时 15 毫秒
101.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
102.
Marek’s disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.  相似文献   
103.
The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.

This study set out to identify novel gene variants that may contribute to human obesity, by combining human exosome sequencing analyses with systematic functional screening in Drosophila. This identifies a number of novel obesity-associated genes which control adiposity in flies, and uncovers a potential role for the Hippo signaling pathway in obesity.

Obesity is a major risk factor for type 2 diabetes, cardiovascular disease, cancers, and, most recently, COVID-19 [1]. Despite the obvious environmental drivers to weight gain, multiple genetic studies have demonstrated that 40% to 70% of the variation in body weight is attributable to genetic variation [2]. The discovery of genes that contribute to the regulation of human body weight can provide insights into the mechanisms involved in energy homeostasis and identify potential targets for weight loss therapy. Moreover, drug targets supported by human genetic evidence are more likely to transit successfully through the drug discovery pipeline [3].A classical approach to the discovery of pathogenic variants is to investigate consanguineous populations with high degrees of parental relatedness (parents who are first or second cousins) where large portions of the genome are identical by descent as a result of family structure in preceding generations (long regions of homozygosity). Indeed, studies in consanguineous families led to the discovery of the first homozygous loss-of-function mutations in the genes encoding leptin (LEP; [4]) and the leptin receptor (LEPR; [5]) associated with severe obesity. However, at the time, the function of leptin and its receptor had already been established in ob/ob and db/db mice, respectively [6], so the pathogenicity of homozygous mutations that resulted in loss of function in cells was readily established.The situation is more complex when studying homozygous mutations in new candidate genes. Some of these genes may play a direct causal role in the development of obesity, others may increase susceptibility to obesity only in certain contexts, and some genes will play no role at all. Recent large-scale studies in healthy people in outbred populations have revealed that a significant proportion of rare homozygous variants that are predicted to cause a loss of function do not result in a clinically discernible phenotype [7,8]. As such, identifying the subset of genes that may be involved in the regulation of adiposity in large human genetic studies presents a major hurdle.For some diseases, functional screens in cultured cells permit rapid testing of candidate genes, as exemplified by studies of insulin secretion in islet cells for genes associated with type 2 diabetes [9]. However, obesity is a systems-level disorder that cannot be replicated in cells. As such, a functional screen in vivo is needed. Here, we use Drosophila to screen the functional consequences of knocking down expression of candidate human obesity genes and to explore the complex interactions between multiple organ systems that are regulated by environmental and genetic factors.Drosophila has been a useful tool in the functional characterisation of human disease-associated genes [1012]. Many organ systems and metabolic enzymes are highly conserved in Drosophila, as are the major regulatory mechanisms involved in metabolic homeostasis [13,14]. As in humans, Drosophila accumulate lipids and become obese when raised on a high-fat or high-sugar diet, developing cardiomyopathy and diabetic phenotypes [15,16]. Furthermore, more than 60% of the genes identified in an unbiased genome-wide RNAi screen for increased fat levels in Drosophila have human orthologues [17]. Most studies in Drosophila have performed forward genetic screens resulting in obesity [18] before assessing whether misregulation of the corresponding mammalian orthologue affects adiposity [17]. Another report knocked down Drosophila orthologs of human genes near body mass index (BMI) loci from GWAS studies to identify genes regulating adiposity [19].Here, instead, we chose to take advantage of new data from a cohort of patients carrying rare genetic variants that might cause severe early-onset obesity. We set out to identify, in Drosophila, whether any of these genes are likely to be responsible for the obese phenotype. An additional advantage of working with Drosophila is the potential to identify interacting genes and signalling pathways. We proposed that it would then be possible to search for variants in human orthologues of these genes in larger cohorts of patients, to discover further as yet unidentified genes regulating human obesity.To increase our chances of finding pathogenic variants, we focused on rare homozygous variants identified in probands with severe obesity, many from consanguineous families. After knocking down expression of Drosophila orthologues of candidate human obesity genes, we discovered 4 genes that significantly increased triacylglyceride (TAG) levels. Importantly, none of these genes had been associated previously with human obesity, but the pathways in which they act are known and could be further analysed in Drosophila. Knockdown of further members of one of these signalling pathways, the Hippo pathway, also gave an obesity phenotype, highlighting the success of our approach. We then searched for variants in the novel obesity genes we identified in Drosophila, and their associated signalling pathways, in larger cohorts of unrelated obese people and healthy controls. This uncovered yet another gene, which, when knocked down in Drosophila, increased adiposity. We demonstrate that the cross-fertilisation of human and Drosophila genetics is a powerful system to provide novel insights into the genetic and cellular processes regulating adiposity and may ultimately contribute to strategies for the prevention and treatment of obesity.  相似文献   
104.
105.
106.
107.
Species flocks within Great Lakes provide unique insights into the factors affecting diversification. Lake Tanganyika (LT) is of particular interest because it contains many endemic groups for which general factors affecting diversification can be discerned. Here, we present the first phylogenetic study of the LT Synodontis (Siluriformes, Mochokidae) species flock using mtDNA sequence data. Our data reveal some previously unrecognized species diversity and indicate that the LT species flock is not monophyletic, and that two closely related clades of endemics may have independently colonized LT. Other comparable small species flocks are characterized by a single colonization event. Molecular date estimates of the timing of the initial within-lake diversification of the LT endemics, based on a fossil calibration, are comparable to those reported for other groups, suggesting that extrinsic factors maybe important common causes of clade diversification. The basal divergence in the sampled Synodontis reveals an East-West African faunal split seen in many terrestrial, but few aquatic groups, the timing of which coincides with East African rifting events.  相似文献   
108.
In a series of laboratory experiments, acclimated pupae of Tuta absoluta were exposed to various constant low temperatures in order to estimate their maximum survival times (Kaplan–Meier, Lt99.99). A Weibull function was fitted to the data points, describing maximum survival time as a function of temperature. In another experiment at ?6°C, the progress of mortality increasing with exposure time was identified. These values were fitted by a sigmoidal function converging asymptotically to 100% mortality for very long exposure times. Analysing mortality data from the maximum survival experiment by a generalized linear model showed a significant common slope parameter (p < .001) that reveals parallelism of the survival curves at each temperature if a log time axis is used. These curves appear stretched (time scaled) if plotted with a nonlogarithmic time axis. By combining these mathematical relations, it was possible to calculate a species‐specific ‘mortality surface’ which exhibits mortalities, depending on temperature and duration of exposure. In order to accumulate hourly mortalities for courses of varying temperatures, an algorithm was developed which yields mortality values from that surface taking into account the attained mortality level. In validation experiments, recorded mortalities were compared against modelled mortalities. Prediction of mortality was partially supported by the model, but pupae experiencing intensely fluctuating temperatures showed decreased mortality, probably caused by rapid cold hardening during exposure. Despite this observation, mortality data converged to distinct levels very close to 100% depending on the intensity of temperature fluctuations that were characteristic for different types of experiments. The highest mortality limit occurred at intensely fluctuating temperatures in laboratory experiments. This constituted a benchmark that was not reached under various field conditions. Thus, it was possible to identify temperature limits for the extinction of field populations of Tuta absoluta pupae.  相似文献   
109.
Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24–26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4–6 months) mice hearts impair cardiomyocyte contractility and shows aging‐like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age‐related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.  相似文献   
110.
Mouriri morleyii R. Goldenb. & Meirelles sp. nov. can be distinguished from the other species in the genus by its large stomatal crypts (the largest ones in the genus), columnar sclereids, tetramerous flowers and calyx closed in bud. This new species was collected on an inselberg in the state of Espírito Santo, Brazil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号