首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  37篇
  2019年   1篇
  2017年   1篇
  2008年   3篇
  2006年   3篇
  2005年   4篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1992年   3篇
  1991年   2篇
  1986年   1篇
  1985年   3篇
  1982年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
  1968年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
21.
22.
23.
Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P < 0.05) plasma glucose in Con, PC, and alpha but decreased it in beta and alpha+beta. The MCR increment was greater (P < 0.05) in beta and alpha+beta than in Con, PC, and alpha. R(a) increased (P < 0.05) in all groups but was attenuated in alpha+beta. Stress-induced lipolysis was abolished in beta (P < 0.05). The marked rise in lactate in Con, PC, and alpha was abolished in alpha+beta and beta. We conclude that the stress-induced increase in MCR is largely independent of changes in insulin, markedly augmented by beta-blockade, and related, at least in part, to inhibition of lipolysis and glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects.  相似文献   
24.
25.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   
26.
Important role of glucagon during exercise in diabetic dogs   总被引:2,自引:0,他引:2  
To define the role of immunoreactive glucagon (IRG) during exercise in diabetes, 12 insulin-deprived alloxan-diabetic (A-D) dogs were run for 90 min (100 m/min, 12 degrees) with or without somatostatin (St 0.5 microgram . kg-1 . min-1). Compared with normal dogs, A-D dogs were characterized by similar hepatic glucose production (Ra), lower glucose metabolic clearance, and higher plasma glucose and free fatty acid levels during rest and exercise. In A-D dogs IRG was greater at rest and exhibited a threefold greater exercise increment than controls, whereas immunoreactive insulin (IRI) was reduced by 68% at rest but had similar values to controls during exercise. Basal norepinephrine, epinephrine, cortisol, and lactate levels were similar in normal and A-D dogs. However, exercise increments in norepinephrine, cortisol, and lactate were higher in A-D dogs. When St was infused during exercise in the A-D dogs, IRG was suppressed by 432 +/- 146 pg/ml below basal and far below the exercise response in A-D controls (delta = 645 +/- 153 pg/ml). IRI was reduced by 1.8 +/- 0.2 microU/ml with St. With IRG suppression the increase in Ra seen in exercising A-D controls (delta = 4.8 +/- 1.6 mg . kg-1 . min-1) was virtually abolished, and glycemia fell by 104 to 133 +/- 37 mg/dl. Owing to this decrease in glycemia, the increase in glucose disappearance was attenuated. Despite the large fall in glucose during IRG suppression, counterregulatory increases were not excessive compared with A-D controls. In fact, as glucose levels approached euglycemia, the increments in norepinephrine and cortisol were reduced to levels similar to those seen in normal exercising dogs. In conclusion, IRG suppression during exercise in A-D dogs almost completely obviated the increase in Ra, resulting in a large decrease in plasma glucose. Despite this large fall in glucose, there was no excess counterregulation, since glucose concentrations never reached the hypoglycemic range.  相似文献   
27.
To determine the effects of chronic hyperinsulinemia on glucagon release, rats were made hyperinsulinemic for 14 days by supplementation of drinking water with sucrose (10%; sucrose-fed) to increase endogenous release or by implantation of osmotic minipumps (subcutaneous, s.c.; or intraperitoneal, i.p.) to deliver exogenous insulin (6 U/day). Both s.c. and i.p. rats also had sucrose in the drinking water to prevent hypoglycemia. Plasma insulin levels were significantly elevated in sucrose-fed, s.c., and i.p. rats. However, glucose levels were significantly elevated in sucrose-fed rats only. Surprisingly, plasma glucagon concentrations were elevated in i.p. and s.c. rats and were not suppressed in sucrose-fed rats. Inverse relationships were found between the plasma levels of insulin and glucose (n = 65; r = -0.42, p less than 0.0001) and between glucose and glucagon (n = 73; r = -0.46, p less than 0.0001). However, unexpectedly, a positive correlation between insulin and glucagon (n = 65; r = 0.47, p less than 0.0001) was established. As suppression of plasma glucagon levels below basal was not observed in any of the hyperinsulinemic or hyperglycemic rats, we wished to establish further whether pancreatic glucagon release could be suppressed below basal levels in the rat by another means. Thus, high doses of somatostatin (50-100 micrograms.kg-1.min-1) were infused for 45 min into normal rats without or with a concomitant hyperinsulinemic, hyperglycemic glucose clamp. Somatostatin fully suppressed insulin, but although plasma glucagon levels were decreased by somatostatin infusion relative to saline-infused animals, there was still no suppression below basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
28.
The metabolic response to moderate exercise in postabsorptive insulin-dependent diabetics receiving insulin by constant intravenous infusion was compared with that of normal controls. The diabetics were infused with insulin overnight and were normoglycemic (89 +/- 6 mg/dL, controls: 90 +/- 6 mg/dL). With exercise, glycemia remained constant in both groups. In the diabetic subjects, glucose production was 166 +/- 11 mg/min at rest, increased to 230 +/- 27 mg/min with exercise (p less than 0.05), and returned to base line during recovery. Glucose disappearance changed in a synchronous and parallel fashion. In the normal controls, insulin concentration was 0.44 +/- 0.03 ng/mL at rest and decreased significantly with exercise (p less than 0.01) while in the diabetic free insulin was fourfold higher (1.70 +/- 0.32) and did not change with exercise. Lactate increased similarly (twofold) with exercise in both groups. In summary, (i) complete normalization of glycemia, glucose turnover, and the lactate response to postabsorptive exercise can be achieved by the intravenous infusion of insulin adjusted to obtain normoglycemia before the onset of exercise; (ii) this response was obtained with an associated elevation in circulating free insulin which probably reflects the peripheral intravenous route rather than the physiologic (portal) site of insulin administration.  相似文献   
29.
Glucose turnover and its regulation were studied during and after two identical bouts of intense exhaustive exercise separated by 1 h to define differences in response. Six lean young postabsorptive male subjects exercised at approximately 100% maximal O2 uptake (3.7 +/- 0.3 l/min) for 13.0 +/- 0.7 min for the first (EX1) and 13.2 +/- 0.8 min for the second (EX2) bout. Plasma glucose increased during EX1 and peaked at 7.0 +/- 0.6 mmol/l in early recovery but to 5.8 +/- 0.5 mmol/l (P less than 0.05) after EX2, and both the hyperglycemic and the hyperinsulinemic responses were less after EX2 (P less than 0.015, analysis of variance). The hyperglycemia was due to lesser increments in glucose utilization (Rd) (3-fold resting) than glucose production (Ra) (7-fold) toward exhaustion and for 7 min of recovery. The rise in Rd was more rapid (P less than 0.05) and metabolic clearance rate was greater during (P = 0.015) and from 9 to 60 min after EX2, and Ra also remained higher during recovery (P less than 0.05). Marked and similar increments in plasma norepinephrine (18-fold) and epinephrine (14-fold) occurred with both bouts. Plasma glucagon increments were small and not different. Therefore, 1) more circulating glucose was used with EX2, 2) greater metabolic clearance rate during and after EX2 suggests local muscle adaptations due to EX1, and 3) significant correlations (P less than 0.002) between plasma norepinephrine and Ra (r = 0.82) and Ra - Rd (r = 0.52) and between epinephrine and Ra (r = 0.71) and Ra - Rd (r = 0.48) suggest a major regulatory role for the catecholamine responses.  相似文献   
30.
Toll-like receptor 4 (TLR4) activation is a key contributor to the carcinogenesis of colon cancer. Overexpression of galectin-1 (Gal-1) also correlates with increased invasive activity of colorectal cancer. Lactate production is a critical predictive factor of risk of metastasis, but the functional relationship between intracellular lactate and Gal-1 expression in TLR4-activated colon cancer remains unknown. In this study, we investigated the underlying mechanism and role of Gal-1 in metastasis and invasion of colorectal cancer (CRC) cells after TLR4 stimulation. Exposure to the TLR4 ligand lipopolysaccharide (LPS) increased expression of Gal-1, induced EMT-related cytokines, triggered the activation of glycolysis-related enzymes, and promoted lactate production. Gene silencing of TLR4 and Gal-1 in CRC cells inhibited lactate-mediated epithelial-mesenchymal transition (EMT) after TLR4 stimulation. Gal-1-mediated activation of a disintegrin and metalloproteinase 10 (ADAM10) and ADAM 17 increased the invasion activity and expression of mesenchymal characteristics in LPS-activated CRC cells. Conversely, inhibition of ADAM10 or ADAM17 effectively blocked the generation of lactate and the migration capacity of LPS-treated CRC cells. Thus, the TLR4/Gal-1 signaling pathway regulates lactate-mediated EMT processes through the activation of ADAM10 and ADAM17 in CRC cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号