首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   9篇
  2009年   3篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   6篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   2篇
  1980年   2篇
  1969年   1篇
排序方式: 共有69条查询结果,搜索用时 296 毫秒
31.
This article describes hepatocyte metabolism mathematical model (HEMETβ), which is an improved version of HEMET, an effective and versatile virtual cell model based on hepatic cell metabolism. HEMET is based on a set of non-linear differential equations, implemented in Simulink®, which describes the biochemical reactions and energetic cell state, and completely mimics the principal metabolic pathways in hepatic cells. The cell energy function and modular structure are the core of this model. HEMETβ as HEMET model describes hepatic cellular metabolism in standard conditions (cell culture in a plastic multi-well placed in an incubator at 37°C with 5% of CO2) and with excess substrates concentration. The main improvements in HEMETβ are the introductions of Michaelis–Menten models for reversible reactions and enzymatic inhibition. In addition, we eliminated hard non-linearities and modelled cell proliferation and every single aminoacid degradation pathway. All these innovations, combined with a user-friendly aspect, allow researchers to create new cell types and validate new experimental protocols just varying ‘peripheral’ pathways or model inputs.  相似文献   
32.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2- cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.   相似文献   
33.
In two patients with atypical myxomas of the left atrium, two-dimensional echocardiography furnished valuable diagnostic information. In one patient, who had previously developed an embolism at the right brachial artery, M-mode echocardiography revealed an abnormal band of echoes within the left atrium. Two-dimensional echocardiography showed a globular cluster of echoes that remained within the left atrial cavity throughout the cardiac cycle; left ventricular angiography confirmed the ultrasonic findings of an intraatrial mass. At surgery, a calcified, nonprolapsing myxoma was excised from the interatrial septum. The second patient had clinical as well as M-mode echographic features of mitral stenosis. Cardiac catheterization showed a significant gradient across the mitral valve, but the left ventriculogram was normal except for an unusual pattern of mitral regurgitation. Subsequent two-dimensional echocardiography revealed a mass of echoes that prolapsed through the mitral valve during diastole. At surgery, a left atrial myxoma was found attached to the posterior mitral annulus. Our experience indicates that two-dimensional ultrasound is superior to conventional echocardiography for detecting unusual cardiac masses.  相似文献   
34.
Growth, mortality, recruitment and relative yield per recruit of Sarotherodon galilaeus galilaeus from Lakes Doukon and Togbadji were studied. Data on total length, total weight and sex were recorded on a monthly basis between January and December 2013 for S. g. galilaeus captured by local fishers. The estimated asymptotic lengths L were 26.2 and 23.6?cm for Lakes Doukon and Togbadji, respectively, while the growth rate K was 0.73 in Lake Doukon and 0.87 in Lake Togbadji. Estimates of fishing mortality, 0.27 and 0.47 y?1 for Doukon and Togbadji, respectively, were low relative to natural mortality, 1.51 and 1.74 y?1, respectively. Sizes at first sexual maturity were 12.8 and 13.2?cm for females and males, respectively, in Lake Doukon, and 11.5 and 12.4?cm for females and males, respectively, in Lake Togbadji. The size at first capture was estimated at 13.3 and 12.7?cm for Lakes Doukon and Togbadji, respectively, which, in the light of the size at maturity estimates, indicates that fish spawn at least once before capture. The current exploitation rates of 0.15 for Lake Doukon and 0.21 for Lake Togbadji suggest that their stocks of S. g. galilaeus are not overexploited in either lake.  相似文献   
35.
Sweat production is crucial for thermoregulation. However, sweating can be problematic for individuals with spinal cord injuries (SCI), as they display a blunting of sudomotor and vasomotor responses below the level of the injury. Sweat gland density and eccrine gland metabolism in SCI are not well understood. Consequently, this study examined sweat lactate (S-LA) (reflective of sweat gland metabolism), active sweat gland density (SGD), and sweat output per gland (S/G) in 7 SCI athletes and 8 able-bodied (AB) controls matched for arm ergometry VO2peak. A sweat collection device was positioned on the upper scapular and medial calf of each subject just prior to the beginning of the trial, with iodine sweat gland density patches positioned on the upper scapular and medial calf. Participants were tested on a ramp protocol (7 min per stage, 20 W increase per stage) in a common exercise environment (21±1°C, 45-65% relative humidity). An independent t-test revealed lower (p<0.05) SGD (upper scapular) for SCI (22.3 ±14.8 glands · cm−2) vs. AB. (41.0 ± 8.1 glands · cm−2). However, there was no significant difference for S/G between groups. S-LA was significantly greater (p<0.05) during the second exercise stage for SCI (11.5±10.9 mmol · l−1) vs. AB (26.8±11.07 mmol · l−1). These findings suggest that SCI athletes had less active sweat glands compared to the AB group, but the sweat response was similar (SLA, S/G) between AB and SCI athletes. The results suggest similar interglandular metabolic activity irrespective of overall sweat rate.  相似文献   
36.
White fat cells have an important physiological role in maintaining triglyceride and free fatty acid levels due to their fundamental storage property, as well as determining insulin resistance. ADipocyte METabolism is a mathematical model that mimics the main metabolic pathways of human white fat cell, connecting inputs (composition of culture medium) to outputs (glycerol and free fatty acid release). It is based on a set of nonlinear differential equations, implemented in Simulink® and controlled by cellular energetic state. The validation of this model is based on a comparison between the simulation results and a set of experimental data collected from the literature.  相似文献   
37.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   
38.
39.
40.
It is well known that many cell functions are activated by chemical signals with a time and space-dependent profile. To mimic these profiles in vitro, it is necessary to develop a system that is able to generate concentration gradients with a resolution similar to that perceived by cells, which is around nanomolar with a spatial resolution of a few tens of microns. Many devices capable of generating steady-state concentration gradients have been developed using continuous flow micro-fluidic techniques. However, these systems cannot reproduce the immobilised concentration gradients that are present in the extracellular matrix. For this reason, we have developed a new gradient generator to enable precise and reproducible studies on the effects of immobilised concentration gradients on cell behaviour. A well-known gradient of a desired molecule was generated on the bottom surface of a hydrogel, which was then used as a stamp to immobilise the molecule on a functionalised substrate. A concentration gradient was thus obtained using a simple silane-based chemical reaction. To validate the method, image analysis was performed on glass slides printed with fluorescein isothiocyanate (FITC)- collagen and FITC-poly-lysine concentration gradients. Preliminary cell adhesion tests were also carried out by seeding NIH-3T3 and mesencephalic cells on lab-glass slides printed with concentration profiles of collagen and poly-lysine, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号