首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   37篇
  2021年   6篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   15篇
  2014年   17篇
  2013年   20篇
  2012年   17篇
  2011年   15篇
  2010年   6篇
  2009年   14篇
  2008年   15篇
  2007年   10篇
  2006年   19篇
  2005年   11篇
  2004年   13篇
  2003年   15篇
  2002年   13篇
  2001年   14篇
  2000年   12篇
  1999年   10篇
  1998年   14篇
  1997年   8篇
  1996年   5篇
  1995年   12篇
  1993年   6篇
  1992年   11篇
  1991年   8篇
  1990年   9篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   14篇
  1985年   13篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   10篇
  1980年   5篇
  1979年   8篇
  1978年   7篇
  1975年   11篇
  1974年   4篇
  1973年   3篇
  1970年   7篇
  1969年   3篇
  1968年   5篇
  1966年   4篇
  1961年   7篇
排序方式: 共有507条查询结果,搜索用时 15 毫秒
151.
152.
153.
Previously, treatment of Tamm-Horsfall glycoprotein (THp) from different donors with endo-beta-galactosidase has been shown to liberate a tetra- and a Sd(a)-active pentasaccharide, concluding the presence of N-linked carbohydrate chains containing additional N - acetyllactosamine units. These type of oligosaccharides were not found in a detailed structure elucidation of the carbohydrate moiety of THp of one male donor, suggesting a donor-specific feature for these type of structures. Therefore, THp was isolated from four healthy male donors and each subjected to endo-beta-galactosidase treatment in order to release these tetra- and Sd(a)-active pentasaccharide. Differences were observed in the total amount of released tetra- and Sda-active pentasaccharide of the used donors (42, 470, 478, 718 microg/100 mg THp), indicating that the presence of repeating N-acetyllactosamine units incorporated into the N-glycan moiety of THp is donor specific. Furthermore, a higher expression of the Sd(a) determinant on antennae which display N-acetyllactosamine elongation was observed, suggesting a better accessibility for the beta-N-acetylgalactosaminyltransferase. In order to characterize the N-glycans containing repeating N- acetyllactosamine units, carbohydrate chains were enzymatically released from THp and isolated. The tetraantennary fraction, which accounts for more than 33% of the total carbohydrate moiety of THp, was used to isolate oligosaccharides containing additional N - acetyllactosamine units. Five N-linked tetraantennary oligosaccharides containing a repeating N-acetyllactosamine unit were identified, varying from structures bearing four Sd(a) determinants to structures containing no Sd(a) determinant (see below). One compound was used in order to specify the branch location of the additional N- acetyllactosamine unit, and it appeared that only the Gal-6' and Gal-8' residues were occupied by a repeating N -acetyllactosamine unit.   相似文献   
154.
The demonstration that interleukin 2 (IL-2) is a lectin specific for oligomannosides allows to understand a new function for this cytokine: as a bifunctional molecule when bound to its receptor ss, IL-2 associates the latter which the CD3/TCR complex, interacting with oligosaccharides of CD3 through its carbohydrate-recognition domain (Zanetta et al. , 1996, Biochem. J., 318, 49-53). This induces the tyrosine phosphorylation of the IL-2R beta by ++p56(lck) , the first step of the IL-2-dependent signaling. Since this specific association is disrupted in vitro by oligomannosides with five and six mannose residues, we made the hypothesis that pathogenic cells or microorganisms could bind IL-2, consequently disturbing the IL-2- dependent response. This study shows that the pathogenic yeast Candida albicans (in contrast with nonpathogenic yeasts) binds high amounts of IL-2 as did cancer cells. In contrast with cancer cells, yeasts do not bind the Man6GlcNAc2-specific lectin CSL, an endogenous "amplifier of activation signals" (Zanetta et al. , 1995, Biochem. J., 311, 629-636).   相似文献   
155.
156.
We describe the distribution along the chromosomes of Caenorhabditis elegans of two repetitive DNA families, RcS5 and Cerep3 and interstitial telomeric sequences. Both families show, among other interesting features, a preferential location in the terminal 30% of the chromosomes. It is known that in these regions of the genome the frequency of recombination is much higher than in the central portion, genes are rarer and sequences important for chromosome disjunction may lie.  相似文献   
157.
158.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   
159.
160.
Pluripotent stem cells(PSCs) can be expanded in vitro in different culture conditions,resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for developmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifications of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated(LC–MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states including ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A(crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consistent with previous observations showing that enhanced proteasome activity helps to sustain pluripotency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号