首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   7篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   10篇
  2014年   8篇
  2013年   25篇
  2012年   33篇
  2011年   24篇
  2010年   6篇
  2009年   7篇
  2008年   18篇
  2007年   17篇
  2006年   20篇
  2005年   17篇
  2004年   9篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
排序方式: 共有249条查询结果,搜索用时 718 毫秒
61.
The dynamics of karyotypical instability of Allium fistulosum L. (Welsh onion) during aging of genetically homogenous seeds from plants grown in three different areas was studied. We analyzed the frequency of anaphase cells with chromosomal aberrations "damage", as a number of chromosomal aberrations per cell with aberrations, and germinating capacity, as an indicator of the 'toxic' influence of age. The seeds' aging was accompanied by an increase in karyotypical instability (increasing frequency of anaphases with aberrations) and with certain changes in the spectrum of chromosome aberrations. The clearest distinctions between old and young seeds were found for the frequency of anaphase cells with chromosome aberrations. The general level of karyotypical instability positively correlates with the age of the seeds. The regression coefficient (b) corresponds to the general tendency of karyotypical instability during seeds' senescence under storage. For 'good' (A), 'normal' (B) and 'bad' (C) conditions, the coefficients (b's) are b(A)=0.22, b(B)=0.46 and b(C)=0.84 (p<0.05 for C, and p<0.001 for A and B). It was found that different ecological conditions of plant vegetation strongly influence age-related dynamics of chromosomal instability in the seeds obtained from these plants. Possible mechanisms of the transgenerational impact of this effect are discussed.  相似文献   
62.
A representative of a new class of dyes with dual fluorescence due to an excited state intramolecular proton transfer (ESIPT) reaction, namely 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone (QMOM), has been studied in a series of solvents covering a large range of polarity and basicity. A linear dependence of the logarithm of its two bands intensity ratio, log(I(N*)/I(T*)), upon the solvent polarity expressed as a function of the dielectric constant, (epsilon- 1)/(2epsilon + 1), is observed for a series of protic solvents. A linear dependence for log(I(N*)/I(T*)) is also found in aprotic solvents after taking into account the solvent basicity. In contrast, the positions of the absorption and the two emission bands of QMOM do not noticeably depend on the solvent polarity and basicity, indicating relatively small changes in the transition moment of QMOM upon excitation and emission. Time-resolved experiments in acetonitrile, ethyl acetate and dimethylformamide suggest an irreversible ESIPT reaction for this dye. According to the time-resolved data, an increase of solvent basicity results in a dramatic decrease of the ESIPT rate constant, probably due to the disruption of the intramolecular H-bond of the dye by the basic solvent. Due to this new sensor property, 3-hydroxyquinolones are promising candidates for the development of a new generation of environment-sensitive fluorescence dyes for probing interactions of biomolecules.  相似文献   
63.
The effects of hyperoxia on the status of antioxidant defenses and markers of oxidative damage were evaluated in goldfish tissues. The levels of lipid peroxides, thiobarbituric acid reactive substances, carbonyl proteins and the activities of some antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of goldfish, Carassius auratus L., over a time course of 3-12 h of hyperoxia exposure followed by 12 or 36 h of normoxic recovery. Exposure to high oxygen resulted in an accumulation of protein carbonyls in tissues throughout hyperoxia and recovery whereas lipid peroxides and thiobarbituric acid reactive substances accumulated transiently under short-term hyperoxia stress (3-6 h) but were then strongly reduced. This suggests that hyperoxia stimulated an enhancement of defenses against lipid peroxidation or mechanisms for enhancing the catabolism of peroxidation products. The activities of principal antioxidant enzymes, superoxide dismutase and catalase, were not altered under hyperoxia but catalase increased during normoxic recovery; activities may rise in anticipation of further hyperoxic excursions. In most tissues, the activities of glutathione-utilizing enzymes (glutathione peroxidase, glutathione-S-transferase, glutathione reductase) as well as glucose-6-phosphate dehydrogenase, were not affected under hyperoxia but increased sharply during normoxic recovery. Correlations between some enzyme activities and oxidative stress markers were found, for example, an inverse correlation was seen between levels of thiobarbituric acid reactive substances and glutathione-S-transferase activity in liver and catalase and glucose-6-phosphate dehydrogenase in kidney. The results suggest that liver glutathione-S-transferase plays an important role in detoxifying end products of lipid peroxidation accumulated under hyperoxia stress.  相似文献   
64.
The effects of hypoxia exposure and subsequent normoxic recovery on the levels of lipid peroxides (LOOH), thiobarbituric acid reactive substances (TBARS), carbonylproteins, total glutathione levels, and the activities of six antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of the common carp Cyprinus carpio. Hypoxia exposure (25% of normal oxygen level) for 5h generally decreased the levels of oxidative damage products, but in liver TBARS content were elevated. Hypoxia stimulated increases in the activities of catalase (by 1.7-fold) and glutathione peroxidase (GPx) (by 1.3-fold) in brain supporting the idea that anticipatory preparation takes place in order to deal with the oxidative stress that will occur during reoxygenation. In liver, only GPx activity was reduced under hypoxia and reoxygenation while other enzymes were unaffected. Kidney showed decreased activity of GPx under aerobic recovery but superoxide dismutase (SOD) and catalase responded with sharp increases in activities. Skeletal muscle showed minor changes with a reduction in GPx activity under hypoxia exposure and an increase in SOD activity under recovery. Responses by antioxidant defenses in carp organs appear to include preparatory increases during hypoxia by some antioxidant enzymes in brain but a more direct response to oxidative insult during recovery appears to trigger enzyme responses in kidney and skeletal muscle.  相似文献   
65.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   
66.
During development, activation of Cl(-)-permeable GABA(A) receptors (GABA(A)-R) excites neurons as a result of elevated intracellular Cl(-) levels and a depolarized Cl(-) equilibrium potential (E(Cl)). GABA becomes inhibitory as net outward neuronal transport of Cl(-) develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) facilitates the accumulation of Cl(-) in neurons. The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABA(A)-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl(-)-extruding transporter (KCC2) in human and rat cortex showed that Cl(-) transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.  相似文献   
67.
Synthesis of ATP from ADP and phosphate, catalyzed by F(0)F(1)-ATP synthases, is the most abundant physiological reaction in almost any cell. F(0)F(1)-ATP synthases are membrane-bound enzymes that use the energy derived from an electrochemical proton gradient for ATP formation. We incorporated double-labeled F(0)F(1)-ATP synthases from Escherichia coli into liposomes and measured single-molecule fluorescence resonance energy transfer (FRET) during ATP synthesis and hydrolysis. The gamma subunit rotates stepwise during proton transport-powered ATP synthesis, showing three distinct distances to the b subunits in repeating sequences. The average durations of these steps correspond to catalytic turnover times upon ATP synthesis as well as ATP hydrolysis. The direction of rotation during ATP synthesis is opposite to that of ATP hydrolysis.  相似文献   
68.
69.
Saccharothrix espanaensis is a member of the order Actinomycetales. The genome of the strain has been sequenced recently, revealing 106 glycosyltransferase genes. In this paper, we report the detection of a glycosyltransferase from Saccharothrix espanaensis which is able to rhamnosylate different phenolic compounds targeting different positions of the molecules. The gene encoding the flexible glycosyltransferase is not located close to a natural product biosynthetic gene cluster. Therefore, the native function of this enzyme might be not the biosynthesis of a secondary metabolite but the glycosylation of internal and external natural products as part of a defense mechanism.  相似文献   
70.

Background

Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth.

Results

We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth’s geological history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号