首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   7篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   10篇
  2015年   9篇
  2014年   8篇
  2013年   24篇
  2012年   33篇
  2011年   23篇
  2010年   6篇
  2009年   7篇
  2008年   18篇
  2007年   17篇
  2006年   20篇
  2005年   17篇
  2004年   9篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
排序方式: 共有245条查询结果,搜索用时 15 毫秒
101.
We have characterized the conformational ensembles of polyglutamine peptides of various lengths (ranging from to ), both with and without the presence of a C-terminal polyproline hexapeptide. For this, we used state-of-the-art molecular dynamics simulations combined with a novel statistical analysis to characterize the various properties of the backbone dihedral angles and secondary structural motifs of the glutamine residues. For (i.e., just above the pathological length for Huntington''s disease), the equilibrium conformations of the monomer consist primarily of disordered, compact structures with non-negligible -helical and turn content. We also observed a relatively small population of extended structures suitable for forming aggregates including - and -strands, and - and -hairpins. Most importantly, for we find that there exists a long-range correlation (ranging for at least residues) among the backbone dihedral angles of the Q residues. For polyglutamine peptides below the pathological length, the population of the extended strands and hairpins is considerably smaller, and the correlations are short-range (at most residues apart). Adding a C-terminal hexaproline to suppresses both the population of these rare motifs and the long-range correlation of the dihedral angles. We argue that the long-range correlation of the polyglutamine homopeptide, along with the presence of these rare motifs, could be responsible for its aggregation phenomena.  相似文献   
102.
The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample.In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.  相似文献   
103.
104.
105.
106.
We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus “hairy” root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus “hairy” root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris “hairy” root lines. Fructose content was found to be 3.4 times higher in A. dracunculus “hairy” root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris “hairy” root lines differed also in ART accumulation level. The increase of ART content up to 1.02?mg/g DW in comparison with the nontransformed roots (up to 0.687?mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus “hairy” root culture produced ART and sugars in a higher amount than mother plants.  相似文献   
107.
AMP-deaminase was purified to electrophoretic homogeneity from white skeletal muscle of a teleost fish, the common carp, Cyprinus carpio. The purified enzyme was highly stable and showed non-Michaelis-Menten kinetics with a S(0.5) value for AMP of 2.52+/-0.16 mM (SEM) and a Hill coefficient of 1.19+/-0.11. Specific activity of the purified enzyme was 1000-1200 U/mg protein. The pH optimum was 6.3 and the enzyme was activated by ADP and ATP, but inhibited by phosphate and fluoride. Low concentrations of NaCl and KCl (100-150 mM) activated, whereas higher concentrations were inhibitory. Free radicals inactivated the enzyme, decreasing V(max) by one-half but not affecting S(0.5) or Hill coefficient. Possible regulatory mechanisms of AMP-deaminase activity in fish muscle are discussed.  相似文献   
108.
109.
110.
A two-photon and second-harmonic microscope   总被引:6,自引:0,他引:6  
Two-photon microscopy has revolutionized life sciences by enabling long-term imaging of living preparations in highly scattering tissue while minimizing photodamage. At the same time, commercial two-photon microscopes are expensive and this has prevented the widespread application of this technique to the biological community. As an alternative to commercial systems, we provide an update of our efforts designing custom-built two-photon instruments by modifying the Olympus FluoView laser scanning confocal microscope. With the newer version of our instrument we modulate the intensity of the laser beam in arbitrary spatiotemporal patterns using a Pockels cell and software control over the scanning. We can also perform simultaneous optical imaging and optical stimulation experiments and combine them with second harmonic generation measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号