首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   19篇
  770篇
  2022年   7篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   18篇
  2016年   22篇
  2015年   14篇
  2014年   16篇
  2013年   36篇
  2012年   57篇
  2011年   53篇
  2010年   21篇
  2009年   20篇
  2008年   31篇
  2007年   43篇
  2006年   39篇
  2005年   31篇
  2004年   32篇
  2003年   19篇
  2002年   26篇
  2001年   20篇
  2000年   15篇
  1999年   21篇
  1998年   3篇
  1997年   4篇
  1992年   24篇
  1991年   21篇
  1990年   19篇
  1989年   11篇
  1988年   10篇
  1987年   12篇
  1986年   10篇
  1985年   12篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
  1980年   2篇
  1979年   6篇
  1978年   7篇
  1977年   6篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
  1967年   3篇
排序方式: 共有770条查询结果,搜索用时 0 毫秒
21.
The toxicity of the nitric oxide donor S-nitrosoglutathione (GSNO) was tested on the Drosophila melanogaster model system. Fly larvae were raised on food supplemented with GSNO at concentrations of 1.0, 1.5 or 4.0 mM. Food supplementation with GSNO caused a developmental delay in the flies. Biochemical analyses of oxidative stress markers and activities of antioxidant and associated enzymes were carried out on 2-day-old flies that emerged from control larvae and larvae fed on food supplemented with GSNO. Larval exposure to GSNO resulted in lower activities of aconitase in both sexes and also lower activities of catalase and isocitrate dehydrogenase in adult males relative to the control cohort. Larval treatment with GSNO resulted in higher carbonyl protein content and higher activities of glucose-6-phosphate dehydrogenase in males and higher activities of superoxide dismutase and glutathione-S-transferase in both sexes. Among the parameters tested, aconitase activity and developmental end points may be useful early indicators of toxicity caused by GSNO.  相似文献   
22.
Biological properties of the known Delta Sleep-Inducing Peptide (DSIP, WAGGDASGE) were studied in vivo in comparison with those of a new DSIP-homologous peptide (WKGGNASGE — ([K 2, N 5]DSIP, KND). This new peptide was recently discovered as the 324–332 fragment of the human lysine-specific histone demethylase 3B (EC 1.14.11, Swiss-Prot: Q7LBC6.1, 1761 a.a.) in the course of a computer search in available databases of proteins and nucleic acids. This demethylase belongs to the JmjC-domain-containing family of histone demethylases which are encoded by the JMJD1B gene and present in tissues of various mammals. These studies confirmed our preliminary conclusions on the functional similarity between the biological activities of DSIP and KND. The examined antioxidative, anticonvulsive, and behavioral effects of KND proved to be more pronounced than those of DSIP. The obtained results additionally sup-ported our hypothesis about KND being an endogenous prototype of a “real” DSIP.  相似文献   
23.
We recently found that S100A4, a member of the multifunctional S100 protein family, protects neurons in the injured brain and identified two sequence motifs in S100A4 mediating its neurotrophic effect. Synthetic peptides encompassing these motifs stimulated neuritogenesis and survival in vitro and mimicked the S100A4-induced neuroprotection in brain trauma. Here, we investigated a possible function of S100A4 and its mimetics in the pathologies of the peripheral nervous system (PNS). We found that S100A4 was expressed in the injured PNS and that its peptide mimetic (H3) affected the regeneration and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1 disease), where the peptide attenuated the deterioration of nerve conduction, demyelination and axonal loss. From these results, S100A4 mimetics emerge as a possible means to enhance axonal sprouting and survival, especially in the context of demyelinating neuropathies with secondary axonal loss, such as Charcot-Marie-Tooth type 1 disease. Moreover, our data suggest that S100A4 is a neuroprotectant in PNS and that other S100 proteins, sharing high homology in the H3 motif, may have important functions in PNS pathologies.  相似文献   
24.
Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9′). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.  相似文献   
25.
The sulfonylurea receptor 1 (Sur1)-NCCa-ATP channel plays a central role in necrotic cell death in central nervous system (CNS) injury, including ischemic stroke, and traumatic brain and spinal cord injury. Here, we show that Sur1-NCCa-ATP channels are formed by co-assembly of Sur1 and transient receptor potential melastatin 4 (Trpm4). Co-expression of Sur1 and Trpm4 yielded Sur1-Trpm4 heteromers, as shown in experiments with Förster resonance energy transfer (FRET) and co-immunoprecipitation. Co-expression of Sur1 and Trpm4 also yielded functional Sur1-Trpm4 channels with biophysical properties of Trpm4 and pharmacological properties of Sur1. Co-assembly with Sur1 doubled the affinity of Trpm4 for calmodulin and doubled its sensitivity to intracellular calcium. Experiments with FRET and co-immunoprecipitation showed de novo appearance of Sur1-Trpm4 heteromers after spinal cord injury in rats. Our findings depart from the long-held view of an exclusive association between Sur1 and KATP channels and reveal an unexpected molecular partnership with far-ranging implications for CNS injury.  相似文献   
26.
27.
28.
Russian Journal of Developmental Biology - The aim of this work is to investigate the dynamics for the ovarian tissue engraftment of inbred August rats transplanted to outbred Wistar rats and vice...  相似文献   
29.
绝经是女性一生中很重要的生理现象之一,它能增加一系列复杂免疫、神经退化、新陈代谢和心血管方面的疾病。血液单核细胞能分化成各种各样的细胞,这些细胞在组织形态发生和免疫应答方面起着很重要的作用。本研究中采用了包含大约14,500个基因探针的Affymetrix Human U133A基因芯片来研究健康的绝经前和绝经后女性外周血液单核细胞中的基因表达谱。样本之间的对比分析表明有20个基因上调,20个基因下调。其中的28个基因根据它们的生物过程如细胞繁殖、免疫应答、细胞代谢等等被分成了6个主要的GO类别;剩下的12个基因其生物学功能还没有被鉴定。研究结果支持了我们的假设:血液单核细胞的功能状态确实受到绝经的影响,而且由此带来的改变可能是由全基因组范围的基因表达谱而决定的。本研究中鉴定的一些差异表达基因有可能作为以后研究与绝经相关的系统免疫、神经退化和心血管疾病的候选基因研究。此工作是这个研究方向的第一次尝试,为将来的进一步研究奠定了基础。  相似文献   
30.
The expression of the laminin-binding protein (LBP) on cellular membranes in different cell lines has been studied. A high level of replication of Venezuelan equine encephalomyelitis (VEE) virus was registered in Vero cells with high levels of LBP on the cell surface. The treatment of Vero cells with monoclonal antibodies to human LBP reduced VEE virus replication by a factor of more than 200. A low level of LBP expression on the surface of 293 cells was increased via transfection by plasmid with gene for human LBP. The VEE virus replication in transfected cells (9S2) was increased by more that 2000 times compared to the 293 cells. The results demonstrated the principal role of cellular LBP in the entry of VEE virus into mammalian cells. It is proposed that LBP is a key cellular protein for the early stage of the VEE virus replication in cells. LBP may be a target protein for the development of a new generation of antiviral drugs capable of inhibiting (enhancing) the alphavirus replication in human cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号