首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   112篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   11篇
  2018年   5篇
  2017年   5篇
  2016年   8篇
  2015年   23篇
  2014年   21篇
  2013年   51篇
  2012年   40篇
  2011年   45篇
  2010年   26篇
  2009年   33篇
  2008年   35篇
  2007年   47篇
  2006年   31篇
  2005年   57篇
  2004年   39篇
  2003年   43篇
  2002年   29篇
  2001年   22篇
  2000年   16篇
  1999年   17篇
  1998年   14篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   22篇
  1991年   12篇
  1990年   14篇
  1989年   20篇
  1988年   19篇
  1987年   14篇
  1986年   16篇
  1985年   16篇
  1984年   16篇
  1983年   12篇
  1981年   11篇
  1980年   8篇
  1979年   9篇
  1978年   12篇
  1977年   10篇
  1976年   9篇
  1974年   6篇
  1973年   7篇
  1970年   8篇
  1967年   4篇
排序方式: 共有955条查询结果,搜索用时 46 毫秒
51.
Liss B  Bruns R  Roeper J 《The EMBO journal》1999,18(4):833-846
ATP-sensitive potassium (K-ATP) channels couple the metabolic state to cellular excitability in various tissues. Several isoforms of the K-ATP channel subunits, the sulfonylurea receptor (SUR) and inwardly rectifying K channel (Kir6.X), have been cloned, but the molecular composition and functional diversity of native neuronal K-ATP channels remain unresolved. We combined functional analysis of K-ATP channels with expression profiling of K-ATP subunits at the level of single substantia nigra (SN) neurons in mouse brain slices using an RT-multiplex PCR protocol. In contrast to GABAergic neurons, single dopaminergic SN neurons displayed alternative co-expression of either SUR1, SUR2B or both SUR isoforms with Kir6.2. Dopaminergic SN neurons expressed alternative K-ATP channel species distinguished by significant differences in sulfonylurea affinity and metabolic sensitivity. In single dopaminergic SN neurons, co-expression of SUR1 + Kir6.2, but not of SUR2B + Kir6.2, correlated with functional K-ATP channels highly sensitive to metabolic inhibition. In contrast to wild-type, surviving dopaminergic SN neurons of homozygous weaver mouse exclusively expressed SUR1 + Kir6.2 during the active period of dopaminergic neurodegeneration. Therefore, alternative expression of K-ATP channel subunits defines the differential response to metabolic stress and constitutes a novel candidate mechanism for the differential vulnerability of dopaminergic neurons in response to respiratory chain dysfunction in Parkinson's disease.  相似文献   
52.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. This leads to the accumulation of 3-O-sulfogalactosylceramide, which results in severe demyelination. Here we describe a novel non-sense mutation W124ter and two disease-causing missense mutations E382Q and C500F in arylsulfatase A gene. Another so far unknown allele harbors three sequence alterations: two polymorphisms (N350S, R496H) and a missense mutation (R288H). The R288H substitution and the N350S polymorphism have previously been found on one allele together with a polymorphism in a polyadenylation signal characteristic for the arylsulfatase A pseudodeficiency allele. The R496H has been shown to occur on another allele. The presence of the R288H, N350S, and R496H substitution on one allele in the absence of the polyadenylation site polymorphism shows that this allele has probably arisen by recombination between the nucleotides of codon 350 and 496.  相似文献   
53.
A series of novel, highly potent, achiral factor Xa inhibitors based on a benzoic acid scaffold and containing a chlorophenethyl moiety directed towards the protease S1 pocket is described. A number of structural features, such as the requirements of the P1, P4 and ester-binding pocket ligands were explored with respect to inhibition of factor Xa. Compound 46 was found to be the most potent compound in a series of antithrombotic secondary assays.  相似文献   
54.
A series of novel, highly potent 2-carboxyindole-based factor Xa inhibitors is described. Structural requirements for neutral ligands, which bind in the S1 pocket of factor Xa were investigated with the 2-carboxyindole scaffold. This privileged fragment assembly approach yielded a set of equipotent, selective inhibitors with structurally diverse neutral P1 substituents.  相似文献   
55.
Ngoumou G  Schaefer D  Mattes J  Kopp MV 《Cytokine》2004,25(4):172-178
BACKGROUND: IL-18 is a pleiotropic cytokine involved in the polarisation of T-cell response. This study was performed to determine whether or not IL-18 is detectable in phytohemagglutinin (PHA) or betalactoglobulin (BLG) stimulated supernatants of cord blood mononuclear cells (CBMC) and to study the in vitro effect of IL-18 on the interferon (IFN)-gaamma and IL-13 release of CBMC of healthy neonates. METHODS: CBMC of neonates were isolated by Ficoll density centrifugation. The cytokines IFN-gamma, IL-13 and IL-18 in the cell culture supernatants were measured using the ELISA technique following stimulation with a unspecific (PHA 20 microg/ml) and an allergen-specific stimulus (BLG 25 microg/ml). In order to study the in vitro effect of IL-18, CBMC were stimulated either with medium alone or with IL-18, IL-18 + PHA and IL-18 + BLG. RESULTS: IL-18 levels in supernatants of CBMC were low and did not vary significantly between unstimulated and PHA or BLG stimulated cell cultures (median 21.4; 23.5 and 15.5 pg/ml, respectively). IFN-gamma and IL-13 levels were significantly higher in response to PHA and BLG (PHA: IFN-gamma, 6154; IL-13, 4357; BLG: IFN-gamma, 801; IL-13, 249 pg/ml) compared to unstimulated cell cultures. The addition of IL-18 to PHA or BLG stimulated CBMC significantly enhanced the IFN-gamma release (PHA: 6154; PHA + IL-18: 13474, p = 0.0001; BLG: 801; BLG + IL-18: 1077, p = 0.008). In comparison to incubation without IL-18, the release of IL-13 was invariable or even reduced, when CBMC were stimulated with PHA + IL-18 (4026, p = 0.16) or BLG + IL-18 (124, p = 0.0001) compared to stimulation of CBMC with PHA (4357 pg/ml) or BLG (249 pg/ml) alone. CONCLUSIONS: IL-18 is detectable in supernatants of CBMC. We observed a significant effect of IL-18 + PHA as well as IL-18 + BLG on IFN-gamma release in vitro. Based on our findings we conclude that IL-18 could act as a strong TH1-inducing factor on stimulated CBMC also in vivo.  相似文献   
56.
57.
58.
Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases.  相似文献   
59.
Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号