首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2707篇
  免费   349篇
  3056篇
  2021年   36篇
  2020年   24篇
  2019年   19篇
  2018年   34篇
  2017年   22篇
  2016年   47篇
  2015年   81篇
  2014年   88篇
  2013年   119篇
  2012年   151篇
  2011年   137篇
  2010年   82篇
  2009年   74篇
  2008年   127篇
  2007年   109篇
  2006年   115篇
  2005年   135篇
  2004年   104篇
  2003年   101篇
  2002年   90篇
  2001年   93篇
  2000年   81篇
  1999年   69篇
  1998年   39篇
  1997年   33篇
  1996年   43篇
  1995年   41篇
  1994年   23篇
  1993年   37篇
  1992年   49篇
  1991年   46篇
  1990年   50篇
  1989年   44篇
  1988年   35篇
  1987年   51篇
  1986年   37篇
  1985年   33篇
  1984年   39篇
  1983年   35篇
  1982年   28篇
  1981年   29篇
  1980年   22篇
  1979年   34篇
  1978年   26篇
  1977年   20篇
  1976年   17篇
  1973年   19篇
  1972年   30篇
  1967年   18篇
  1966年   16篇
排序方式: 共有3056条查询结果,搜索用时 15 毫秒
71.
72.
Summary The soil isolate Cellulomonas cellulans AM8 produces an extracellular l-amino acid oxidase (L-AAO) with broad substrate specificity. The strain produced up to 0.35 unit (U)/ml of the extracellular L-AAO in a simple medium containing glycerol and yeast extract. The enzyme was easily purified up to 30 U/mg protein using Phenyl-Sepharose fast flow. The purified enzyme migrated as single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with a molecular mass of 55 kDa. On native PAGE the molecular mass was approx. 300 000 kDa, which may be due to aggregation. With the exception of glycine, proline, and threonine, all the amino acids normally constituting proteins were oxidized. The V max values from 0.7 to 35.2 U/mg for aspartic acid and lysine, respectively, and the K m values from 0.007 to 7.1 mm for cysteine and valine, respectively, were obtained at 25° C and pH 7.0 in oxygen-saturated solutions. The L-AAO had a pH optimum of 6.5–7.5. It was stable for several months at — 30° C and for some days at 35° C. Ferricyanide served as an electron acceptor with a V max of 50 U/mg and K m for 0.3 mm with phenylalanine as the substrate. Correspondence to: R. D. Schmid  相似文献   
73.
Liverworts are well supported as the sister group to all other land plants (embryophytes) by molecular data. Observations strongly supporting this earliest dichotomy in embryophyte evolution are the strikingly different introns occurring in the mitochondrial DNAs of liverworts versus non-liverwort embryophytes (NLE), including the mosses. A final conclusion on the most basal lineages of mosses, for which genera such as Sphagnum and Takakia are the most likely candidates, is lacking. We have now investigated cox1i624, a mitochondrial group I intron conserved between the moss Physcomitrella patens and the liverwort Marchantia polymorpha. Focusing on a sampling of liverwort and moss genera, which had previously been identified as early branching taxa in their respective clades, we find that group I intron cox1i624 is universally conserved in all 33 mosses and 11 liverworts investigated. The group I intron core secondary structure is well conserved between the two ancient land plant clades. However, whereas dramatic size reductions are seen in the moss phylogeny, exactly the opposite is observed for liverworts. The cox1i624g1 locus was used for phylogenetic tree reconstruction also in combination with data sets of nad5i753g1 as well as chloroplast loci rbcL and rps4. The phylogenetic analyses revealed (i) very good support for the Treubiopsida as sister clade to all other liverworts, (ii) a sister group relationship of the nematodontous Tetraphidopsida and Polytrichopsida and (iii) two rivalling hypotheses about the basal-most moss genus with mitochondrial loci suggesting an isolated Takakia as sister to all other mosses and chloroplast loci indicating a TakakiaSphagnum clade.  相似文献   
74.
75.
Electrical activity plays a pivotal role in glucose-stimulated insulin secretion from pancreatic -cells. Recent findings have shown that the electrophysiological characteristics of human -cells differ from their rodent counterparts. We show that the electrophysiological responses in human -cells to a range of ion channels antagonists are heterogeneous. In some cells, inhibition of small-conductance potassium currents has no effect on action potential firing, while it increases the firing frequency dramatically in other cells. Sodium channel block can sometimes reduce action potential amplitude, sometimes abolish electrical activity, and in some cells even change spiking electrical activity to rapid bursting. We show that, in contrast to L-type -channels, P/Q-type -currents are not necessary for action potential generation, and, surprisingly, a P/Q-type -channel antagonist even accelerates action potential firing. By including SK-channels and dynamics in a previous mathematical model of electrical activity in human -cells, we investigate the heterogeneous and nonintuitive electrophysiological responses to ion channel antagonists, and use our findings to obtain insight in previously published insulin secretion measurements. Using our model we also study paracrine signals, and simulate slow oscillations by adding a glycolytic oscillatory component to the electrophysiological model. The heterogenous electrophysiological responses in human -cells must be taken into account for a deeper understanding of the mechanisms underlying insulin secretion in health and disease, and as shown here, the interdisciplinary combination of experiments and modeling increases our understanding of human -cell physiology.  相似文献   
76.
77.
78.
79.
Amino acids labelled with dimethylaminoazobenzenesulphonyl chloride can be separated by reversed-phase high-pressure liquid chromatography and detected in the visible region (436 nm). All 19 naturally occurring amino acids can be separated on a Zorbax ODS column by employing two different gradient systems consisting of an acetonitrile/aqueous buffer mixture. As little as 2--5 pmol of an individual dimethylaminoazobenzenesulphonyl-amino acid can be quantitatively analysed with reliability, and only 10--30 ng of the dimethylaminoazobenzenesulphonylated protein hydrolysate is needed for each complete amino acid analysis. This new technique is as sensitive as any of the current amino acid analysis methods involving ion-exchange separation plus fluorescence detection, and is technically much simpler. By the combination of this sensitive amino acid-analysing technique with carboxypeptidase, we have been able to determine the C-terminal sequence of polypeptides at the picomole level.  相似文献   
80.
In this study, the contribution of intramembrane hydrogen bonding at the interface between polypeptide and cofactor is explored in the native lipid environment by use of model bacteriochlorophyll proteins. In the peripheral antenna complex, LH2, large portions of the transmembrane helices, which make up the dimeric bacteriochlorophyll-binding site, are replaced by simplified, alternating alanine-leucine stretches. Replacement of either one of the two helices with the helices containing the model sequence at a time results in the assembly of complexes with nearly native light harvesting properties. In contrast, replacement of both helices results in the loss of antenna complexes from the membrane. The assembly of such doubly modified complexes is restored by a single intramembrane serine residue at position -4 relative to the liganding histidine of the alpha-subunit. In situ analysis of the spectral properties in a series of site-directed mutants reveals a critical dependence of the model complex assembly on the side chain of the residue at this position in the helix. A hydrogen bond between the hydroxy group of the serine and the 13(1) keto group of one of the central bacteriochlorophylls of the complexes is identified by Raman spectroscopy in the model antenna complex containing one of the alanine-leucine helices. The additional OH group of the serine residue, which participates in hydrogen bonding, increases the thermal stability of the model complexes in the native membrane. Intramembrane hydrogen bonding is thus shown to be a key factor for the binding of bacteriochlorophyll and assembly of this model cofactor-polypeptide site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号