首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3098篇
  免费   336篇
  国内免费   4篇
  3438篇
  2023年   9篇
  2022年   25篇
  2021年   57篇
  2020年   34篇
  2019年   32篇
  2018年   40篇
  2017年   55篇
  2016年   69篇
  2015年   107篇
  2014年   140篇
  2013年   188篇
  2012年   220篇
  2011年   235篇
  2010年   150篇
  2009年   127篇
  2008年   182篇
  2007年   209篇
  2006年   185篇
  2005年   197篇
  2004年   168篇
  2003年   185篇
  2002年   170篇
  2001年   44篇
  2000年   25篇
  1999年   45篇
  1998年   45篇
  1997年   39篇
  1996年   34篇
  1995年   36篇
  1994年   36篇
  1993年   21篇
  1992年   26篇
  1991年   20篇
  1990年   18篇
  1989年   25篇
  1988年   19篇
  1987年   13篇
  1986年   10篇
  1985年   11篇
  1984年   18篇
  1982年   14篇
  1981年   13篇
  1980年   10篇
  1979年   15篇
  1978年   14篇
  1976年   13篇
  1974年   10篇
  1972年   9篇
  1970年   10篇
  1969年   9篇
排序方式: 共有3438条查询结果,搜索用时 15 毫秒
121.

Background

Thrombotic microangiopathies (TMA) in adults such as thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS) are life-threatening disorders if untreated. Clinical presentation is highly variable and prognostic factors for clinical course and outcome are not well established.

Methods

We performed a retrospective observational study of 62 patients with TMA, 22 males and 40 females aged 16 to 76 years, treated with plasma exchange at one center to identify clinical risk factors for the development of renal insufficiency.

Results

On admission, 39 of 62 patients (63%) had acute renal failure (ARF) with 32 patients (52%) requiring dialysis treatment. High systolic arterial pressure (SAP, p = 0.009) or mean arterial pressure (MAP, p = 0.027) on admission was associated with acute renal failure. Patients with SAP>140 mmHg on admission had a sevenfold increased risk of severe kidney disease (OR 7.464, CI 2.097–26.565). MAP>100 mmHg indicated a fourfold increased risk for acute renal failure (OR 4.261, CI 1.400–12.972). High SAP, diastolic arterial pressure (DAP), and MAP on admission were also independent risk factors for persistent renal insufficiency with the strongest correlation for high MAP. Moreover, a high C-reactive protein (CRP) level on admission correlated with renal failure in the course of the disease (p = 0.003). At discharge, renal function in 11 of 39 patients (28%) had fully recovered, 14 patients (23%) remained on dialysis, and 14 patients (23%) had non-dialysis-dependent chronic kidney disease. Seven patients (11%) died. We identified an older age as risk factor for death.

Conclusions

High blood pressure as well as high CRP serum levels on admission are associated with renal insufficiency in TMA. High blood pressure on admission is also a strong predictor of sustained renal insufficiency. Thus, adult TMA patients with high blood pressure may require special attention to prevent persistent renal failure.  相似文献   
122.
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).  相似文献   
123.
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.  相似文献   
124.
Direct linkage between the plasma membrane and the actin cytoskeleton is controlled by the protein ezrin, a member of the ezrin-radixin-moesin protein family. To function as a membrane-cytoskeleton linker, ezrin needs to be activated in a process that involves binding of ezrin to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylation of a conserved threonine residue. Here, we used colloidal probe microscopy to quantitatively analyze the interaction between ezrin and F-actin as a function of these activating factors. We show that the measured individual unbinding forces between ezrin and F-actin are independent of the activating parameters, in the range of approximately 50 piconewtons. However, the cumulative adhesion energy greatly increases in the presence of PIP2 demonstrating that a larger number of bonds between ezrin and F-actin has formed. In contrast, the phosphorylation state, represented by phosphor-mimetic mutants of ezrin, only plays a minor role in the activation process. These results are in line with in vivo experiments demonstrating that an increase in PIP2 concentration recruits more ezrin to the apical plasma membrane of polarized cells and significantly increases the membrane tension serving as a measure of the adhesion sites between the plasma membrane and the F-actin network.  相似文献   
125.
Complete 18S ribosomal RNA sequence data from representatives of all extant pteridophyte lineages together with RNA sequences from different seed plants were used to infer a molecular phylogeny of vascular plants that included all major land plant lineages. The molecular data indicate that lycopsids are monophyletic and are the earliest diverging group within the vascular land plants, whereasPsilotum nudum is more closely related to the seed plants than to other pteridophyte lineages. The phylogenetic trees based on maximum likelihood, parsimony and distance analyses show substantial agreement with the evolutionary relationships of land plants as interpreted from the fossil record.  相似文献   
126.
Based on cross-sectional and longitudinal data collected in 1967–1988 by various observers, male reproductive success was studied in the Hanuman langurs of Jodhpur, India. The harem-structured social organization ensures a high degree of paternity certainty. Births occur throughout the year, with significant peaks and minima in March and November, respectively (n =398).The interbirth interval averages 16.7 months (n = 114).The duration of harem residencies varies between 3 days and ≥ 74.0 months, with a mean of 26.5 (n = 64). Harem holder replacements occur during all months of the year. No male achieves residency in more than one troop, suggesting that residency is associated with a distinct peak in the resource holding potential of a given male. Reproductive success among males varies considerably. Male mortality is high due to migration and intrasexual competition, leading to an adult sex ratio of 1:4.9. It is estimated that one-quarter of all adult males will never gain harem residency. Conceptions achieved outside harem residencies are so rare (4.7%) that a viable low-risk strategy, opting for longevity instead of harem residency, is unlikely. Tenure length has a stronger influence on male reproductive success than harem size because interbirth intervals are significantly shorter in small harems than in larger ones. It is assumed that females in one-male breeding structures compete for sperm and that such competition is more intense in larger harems.  相似文献   
127.
Kastl K  Ross M  Gerke V  Steinem C 《Biochemistry》2002,41(31):10087-10094
By means of the quartz crystal microbalance (QCM) technique, the interaction of annexin A1 with lipid membranes was quantified using solid-supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid-supported lipid bilayers were composed of a first octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer obtained from vesicle fusion. This experimental setup enabled us to determine for the first time rate constants and affinity constants of annexin A1 binding to phosphatidylserine-containing layers as a function of the calcium ion concentration in solution and the cholesterol content within the outer leaflet of the solid-supported bilayer. The results reveal that a decrease in Ca(2+) concentration from 1 mM to 100 microM significantly increases the rate of annexin A1 binding to the membrane independent of the cholesterol content. However, the presence of cholesterol in the membrane altered the affinity constants considerably. While the association constant decreases with decreasing Ca(2+) concentration in the case of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) membranes lacking cholesterol, it remains high in the presence of cholesterol.  相似文献   
128.
Changes in the A(3)B(3)CDF-complex of the Methanosarcina mazei G?1 A(1)-ATPase in response to ligand binding have been studied by small-angle x-ray scattering, protease digestion, fluorescence spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and CuCl(2)-induced disulfide formation. The value of the radius of gyration, R(g), increases slightly when MgATP, MgADP, or MgADP + P(i) (but not MgAMP-PNP) is present. The nucleotide-binding subunits A and B were reacted with N-4[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide, and spectral shifts and changes in fluorescence intensity were detected upon addition of MgAMP-PNP, MgATP, MgADP + P(i), or MgADP. Trypsin treatment of A(1) resulted in cleavage of the stalk subunits C and F, which was rapid in the presence of MgAMP-PNP but slow when MgATP or MgADP were added to the enzyme. When A(1) was supplemented with CuCl(2) a clear nucleotide dependence of an A-A-D cross-linking product was generated in the presence of MgADP and MgATP but not when MgAMP-PNP or MgADP + P(i) was added. The site of cross-link formation was located in the region of the N and C termini of subunit D. The data suggest that the stalk subunits C, D, and F in A(1) undergo conformational changes during ATP hydrolysis.  相似文献   
129.
Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.  相似文献   
130.
Vegetation History and Archaeobotany - Between the initial colonization of North America and the European settlement period, Indigenous American land use practices shaped North American landscapes...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号