首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   450篇
  免费   46篇
  2022年   3篇
  2021年   6篇
  2018年   12篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   18篇
  2013年   20篇
  2012年   32篇
  2011年   29篇
  2010年   22篇
  2009年   12篇
  2008年   25篇
  2007年   27篇
  2006年   18篇
  2005年   8篇
  2004年   21篇
  2003年   16篇
  2002年   16篇
  2001年   19篇
  2000年   14篇
  1999年   18篇
  1998年   13篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1980年   3篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   7篇
  1971年   5篇
  1970年   5篇
  1969年   2篇
  1968年   2篇
  1966年   5篇
排序方式: 共有496条查询结果,搜索用时 31 毫秒
81.
We report a straightforward and widely applicable cryopreservation method for Lilium shoot tips. This method uses adventitious shoots that were induced from leaf segments cultured for 4 weeks on a shoot regeneration medium containing 1 mg/l α-naphthaleneacetic acid and 0.5 mg/l thidiazuron. Shoot tips (1.5–2 mm in length) including 2–3 leaf primordia were precultured on Murashige and Skoog (MS; 1962) medium with 0.5 M sucrose for 1 day and then treated with a loading solution containing 0.4 M sucrose and 2 M glycerol for 20 min, followed by a Plant Vitrification Solution 2 (PVS2) treatment for 4 h at 0 °C. Dehydrated shoot tips were transferred onto 2.5 µl PVS2 droplets on aluminum foil strips, prior to a direct immersion into liquid nitrogen for 1 h. Frozen shoot tips were re-warmed in MS medium containing 1.2 M sucrose for 20 min at room temperature, followed by post-thaw culture for shoot regrowth. Shoot regrowth levels ranged from 42.5 % for L. longiflorum × Oriental ‘Triumphator’ to 87.5 % for L. Oriental hybrid ‘Siberia’, with a mean shoot regrowth level of 67.1 % across the six diverse Lilium genotypes tested. Histological observations found that the survival patterns were similar in cryopreserved shoot tips of ‘Triumphator’ and ‘Siberia’. Assessments using inter-simple sequence repeat markers found no differences in regenerants recovered from the control stock cultures and from cryopreserved shoot tips in ‘Triumphator’ and ‘Siberia’. This Lilium droplet-vitrification cryopreservation method is efficient, simple and widely applicable for the long-term conservation of lily genetic resources.  相似文献   
82.
83.
In shrub willow biomass crop (SWBC) production systems, the soil CO2 efflux (Fc) component in the carbon cycle remains poorly understood. This study assesses (i) differences of Fc rates among the 5‐, 12‐, 14‐, and 19‐year‐old SWBCs with two treatments: continuous production (regrowth) willow fields that were harvested and allowed to regrow, and willow fields that were harvested, killed, and then stools and roots were ground into the soil (removal); (ii) temporal and spatial variations of Fc rates; (iii) root respiration contributions to total Fc; and (iv) climatic variables affecting Fc. During the growing season (May to September), Fc rates showed no statistically significant differences across different ages (P = 0.664), and between treatments (P = 0.351); however, there was an interaction between age and treatment (P = 0.001). Similarly, during the dormant season (October to April), Fc rates revealed no statistically significant differences across different ages (P = 0.305) and treatment interaction with age (P = 0.097). Fc rates differed significantly (P < 0.001) among different times of the day and times of the year. Fc rates, between 00 and 1059 h, between 1100 and 1659 h, and between 1700 and 2400 h displayed consistency from May to November; however, Fc rates in these three time intervals showed significant differences (P < 0.0001). In December, Fc rates remained constant over 24 h. Fc rates demonstrated higher temporal and spatial variations among willow age classes than between regrowth and removal treatments. Temporal and spatial variations of Fc were higher during the dormant season than during the growing season. The proportion of root respiration to total Fc ranged from 18 to 33% across age classes. Fc rates showed strong association with soil and air temperatures, and relative humidity.  相似文献   
84.
Despite high remission rates after chemotherapy, only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis. This extremely poor prognosis of AML is mainly caused by treatment failure due to chemotherapy resistance. Chemotherapy resistance can be caused by various features including activation of alternative signaling pathways, evasion of cell death or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R). Here we have studied the role of the insulin-like growth factor-binding protein-7 (IGFBP7), a tumor suppressor and part of the IGF-1R axis, in AML. We report that IGFBP7 sensitizes AML cells to chemotherapy-induced cell death. Moreover, overexpression of IGFBP7 as well as addition of recombinant human IGFBP7 is able to reduce the survival of AML cells by the induction of a G2 cell cycle arrest and apoptosis. This effect is mainly independent from IGF-1R activation, activated Akt and activated Erk. Importantly, AML patients with high IGFBP7 expression have a better outcome than patients with low IGFBP7 expression, indicating a positive role for IGFBP7 in treatment and outcome of AML. Together, this suggests that the combination of IGFBP7 and chemotherapy might potentially overcome conventional AML drug resistance and thus might improve AML patient survival.Only 30–40% of acute myeloid leukemia (AML) patients survive 5 years after diagnosis.1 This extremely poor prognosis is mainly caused by treatment failure due to chemotherapy resistance. This resistance is often a multifactorial phenomenon that can include enhanced expression or activation of receptor tyrosine kinases such as the insulin growth factor-1 receptor (IGF-1R).2, 3 The IGF-1R stimulates proliferation, protects cells from apoptosis and has been implicated in the development and maintenance of various cancers.4, 5 Several oncogenes require an intact IGF-1R pathway for their transforming activity6 and moreover, disruption or inhibition of IGF-1R activity has been shown to inhibit the growth and motility of a wide range of cancer cells in vitro and in mouse models.4, 5 IGF-1Rs are membrane receptors and binding of their ligand, the insulin-like growth factor-1 (IGF-1), results in receptor phosphorylation and activation of MAPK and PI3K/Akt signaling.4 Importantly, IGF-1, normally produced by the liver and bone marrow stromal cells, can stimulate the proliferation of cancer cells in vitro and genetic manipulations that reduce IGF-1 signaling can lead to decreased tumor growth.7, 8In hematological malignancies, a role for IGF-1 signaling has been demonstrated in multiple myeloma (MM) where it stimulates growth and potently mediates survival.9 Several anti-IGF-1R strategies have been shown to inhibit MM growth.10, 11 In AML, expression of the IGF-1R and IGF-1 was detected in AML cell lines and primary AML blasts and stimulation with IGF-1 can promote the growth of AML cells.12, 13, 14 In addition, neutralizing IGF-1R antibodies and the tyrosine kinase inhibitors (TKIs) NVP-AEW541 and NVP-ADW742, have been shown to inhibit proliferation and to induce apoptosis.15, 16In addition to its mitogenic and anti-apoptotic roles, directly influencing tumor development, IGF-1R appears to be a critical determinant of response to numerous anti-cancer therapies, including TKIs and chemotherapy.2, 3, 17, 18, 19, 20, 21, 22 In AML, activated IGF-1R signaling has been linked to cytarabine resistance, a drug included in every AML treatment schedule.17 Notably, in several cancer cell lines, a small subpopulation of drug-tolerant cancer cells exists that maintains their viability, after treatment with a lethal drug dose, via engagement of the IGF-1R.18The activity of the IGF-1R is tightly controlled at multiple levels, including their processing, endocytosis, trafficking and availability of its ligands.4 Ligand bioavailability is partly controlled by the family of secreted insulin-like growth factor-binding protein (IGFBP1 to IGFBP6), which can bind to IGFs therewith regulating the interaction of these ligands to their receptors. However, as IGFBPs are able to induce IGF-dependent and IGF-independent effects, the results of several studies on their role in cancer cell survival appeared to be controversial and complex.23, 24 In addition to IGFBPs, various IGFBP-related proteins have been identified.23, 25 One of these is the IGFB-related protein 1, also known as insulin-like growth factor-binding protein-7 (IGFBP7). IGFBP7 has 30% homology to IGFBP1 to IGFBP6 in its N-terminal domain and functions predominantly as a tumor suppressor.23, 24, 25, 26 In contrast to IGFBP1 to IGFBP6, which bind to the IGFs,23 IGFBP7 is a secreted protein that can directly bind to the IGF-1R and thereby inhibits its activity.27 The abundance of IGFBP7 is inversely correlated with tumor progression in hepatocellular carcinoma.28 Importantly, decreased expression of IGFBP7 has been associated with therapy resistance29, 30 and increasing IGFBP7 levels can inhibit melanoma and breast cancer growth.31, 32 IGFBP7 was originally identified as being involved in Raf-mediated apoptosis and senescence33 and also has been shown to induce senescence in mesenchymal stromal cells.34We established that IGFBP7 induces a cell cycle block and apoptosis in AML cells and cooperates with chemotherapy in the induction of leukemia cell death. AML patients with low IGFBP7 expression have a worse outcome than patients with high IGFBP7 expression, indicating that AML patients might benefit from a combination therapy consisting of chemotherapy and IGFBP7. Our results define IGFBP7 as a focus to enhance chemotherapy efficacy and improve AML patient survival.  相似文献   
85.
PR39, a peptide regulator of angiogenesis   总被引:31,自引:0,他引:31  
Although tissue injury and inflammation are considered essential for the induction of angiogenesis, the molecular controls of this cascade are mostly unknown. Here we show that a macrophage-derived peptide, PR39, inhibited the ubiquitin-proteasome-dependent degradation of hypoxia-inducible factor-1alpha protein, resulting in accelerated formation of vascular structures in vitro and increased myocardial vasculature in mice. For the latter, coronary flow studies demonstrated that PR39-induced angiogenesis resulted in the production of functional blood vessels. These findings show that PR39 and related compounds can be used as potent inductors of angiogenesis, and that selective inhibition of hypoxia-inducible factor-1alpha degradation may underlie the mechanism of inflammation-induced angiogenesis.  相似文献   
86.
Classically, HLA-DR expressed on antigen presenting cells (APC) initiates lymphocyte activation via presentation of peptides to TCR bearing CD4+ T-Cells. Here we demonstrate that HLA-DR alpha 2 domain (sHLA-DRalpha2) also induces negative signals by engaging TIRC7 on lymphocytes. This interaction inhibits proliferation and induces apoptosis in CD4+ and CD8+ T-cells via activation of the intrinsic pathway. Proliferation inhibition is associated with SHP-1 recruitment by TIRC7, decreased phosphorylation of STAT4, TCR-zeta chain & ZAP70, and inhibition of IFN-gamma and FasL expression. HLA-DRalpha2 and TIRC7 co-localize at the APC-T cell interaction site. Triggering HLA-DR - TIRC7 pathway demonstrates that sHLA-DRalpha2 treatment inhibits proinflammatory-inflammatory cytokine expression in APC & T cells after lipopolysaccaride (LPS) stimulation in vitro and induces apoptosis in vivo. These results suggest a novel antiproliferative role for HLA-DR mediated via TIRC7, revise the notion of an exclusive stimulatory interaction of HLA-DR with CD4+ T cells and highlights a novel physiologically relevant regulatory pathway.  相似文献   
87.

Background  

The foodborne, gram-positive pathogen, Listeria monocytogenes, is capable of causing lethal infections in compromised individuals. In the post genomic era of L. monocytogenes research, techniques are required to identify and validate genes involved in the pathogenicity and environmental biology of the organism. The aim here was to develop a widely applicable method to tag L. monocytogenes strains, with a particular emphasis on the development of multiple strain competitive index assays.  相似文献   
88.
This study evaluated the impacts of reducing nutrient levels on bacterial water quality in drinking water. Two American Water System facilities (sites NJ102a and IN610) with histories of coliform problems were involved, and each water utility received two pilot distribution systems (annular reactors). One reactor simulated the conventional treatment conditions (control), while the other reactor was used to assess the effect of biological filtration and subsequent reduced biodegradable organic matter levels on suspended (water column) and biofilm bacterial concentrations in the distribution systems. Biodegradable organic matter levels were reduced approximately by half after biological treatment. For site NJ102a, the geometric mean of the assimilable organic carbon concentrations was 217 microg/liter in the plant effluent and 91 microg/liter after biological filtration. For both sites, plant effluent biodegradable dissolved organic carbon levels averaged 0.45 mg/liter, versus 0.19 to 0.22 mg/liter following biological treatment. Biological treatment improved the stability of free chlorine residuals, while it had little effect on chloramine consumption patterns. High bacterial levels from the biological filters resulted in higher bacterial concentrations entering the test reactors than entering the control reactors. On average, biofilms in the model systems were reduced by 1 log unit (from 1.4 x 10(5) to 1.4 x 10(4) CFU/cm(2)) and 0.5-log unit (from 2.7 x 10(5) to 7.8 x 10(4) CFU/cm(2)) by biological treatment at sites NJ102a and IN610, respectively. Interestingly, it required several months of biological treatment before there was an observable impact on bacterial water quality in the system, suggesting that the effect of the treatment change was influenced by other factors (i.e., pipe conditions or disinfection, etc.).  相似文献   
89.
Muscle nuclei are exposed to variable cytoplasmic strain produced by muscle contraction and relaxation, but their morphology remains stable. Still, the mechanism responsible for maintaining myonuclear architecture, and its importance, is currently elusive. Herein, we uncovered a unique myonuclear scaffold in Drosophila melanogaster larval muscles, exhibiting both elastic features contributed by the stretching capacity of MSP300 (nesprin) and rigidity provided by a perinuclear network of microtubules stabilized by Shot (spectraplakin) and EB1. Together, they form a flexible perinuclear shield that protects myonuclei from intrinsic or extrinsic forces. The loss of this scaffold resulted in significantly aberrant nuclear morphology and subsequently reduced levels of essential nuclear factors such as lamin A/C, lamin B, and HP1. Overall, we propose a novel mechanism for maintaining myonuclear morphology and reveal its critical link to correct levels of nuclear factors in differentiated muscle fibers. These findings may shed light on the underlying mechanism of various muscular dystrophies.  相似文献   
90.
The F508del mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis (CF). Both CF patients and F508del carriers have decreased blood pressure. While this has been attributed to salt depletion, recent studies have shown F508del expression interferes with smooth muscle cell calcium mobilization. We tested the hypothesis that carriers of the F508del mutation have lower adult blood pressures and reduced aortic contractility without a reduction in circulating blood volume. By radiotelemetry, F508del heterozygous mice had significantly lower arterial pressures than wild-type C57BL/6 controls, with the greatest effect seen at the time of dark-to-light cycle transition (mean difference of 10 mmHg). To replicate the vascular effects of sympathetic arousal, isoproterenol and epinephrine were co-infused, and F508del mice again had significantly reduced arterial pressures. Aortas isolated from F508del heterozygous mice had significantly decreased constriction to noradrenaline (0.9±0.2 versus 2.9±0.7 mN). Inhibition of wild-type CFTR or the inositol triphosphate receptor replicated the phenotype of F508del aortas. CFTR carrier status did not alter circulating blood volume. We conclude the CFTR-F508del mutation decreases aortic contractility and lowers arterial pressures. As a cAMP-activated chloride channel that facilitates calcium mobilization, we speculate wild-type CFTR co-activation during adrenergic receptor stimulation buffers the vasodilatory response to catecholamines, and loss of this compensatory vasoconstrictor tone may contribute to the lower arterial pressures seen in heterozygote carriers of a CFTR-F508del mutation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号