In vertebrates, hyaluronan biosynthesis is regulated by three transmembrane catalytic enzymes denoted Has1, Has2 and Has3. We have previously cloned the Xenopus orthologues of the corresponding genes and defined their spatiotemporal distribution during development. During mammalian embryogenesis, Has2 activity is known to be crucial, as its abrogation in mice leads to early embryonic lethality. Here, we show that, in Xenopus, morpholino-mediated loss-of-function of XHas2 alters somitogenesis by causing a disruption of the metameric somitic pattern and leads to a defective myogenesis. In the absence of XHas2, early myoblasts underwent apoptosis, failing to complete their muscle differentiation programme. XHas2 activity is also required for migration of hypaxial muscle cells and trunk neural crest cells (NCC). To approach the mechanism whereby loss of HA, following XHas2 knockdown, could influence somitogenesis and precursor cell migration, we cloned the orthologue of the primary HA signalling receptor CD44 and addressed its function through an analogous knockdown approach. Loss of XCD44 did not disturb somitogenesis, but strongly impaired hypaxial muscle precursor cell migration and the subsequent formation of the ventral body wall musculature. In contrast to XHas2, loss of function of XCD44 did not seem to be essential for trunk NCC migration, suggesting that the HA dependence of NCC movement was rather associated with an altered macromolecular composition of the ECM structuring the cells' migratory pathways. The presented results, extend our knowledge on Has2 function and, for the first time, demonstrate a developmental role for CD44 in vertebrates. On the whole, these data underlie and confirm the emerging importance of cell-ECM interactions and modulation during embryonic development. 相似文献
Nanomaterials are expected to play an important role in the development of sustainable products. The use of nanomaterials in solar cells has the potential to increase their conversion efficiency. In this study, we performed a life cycle assessment (LCA) for an emerging nanowire‐based solar technology. Two lab‐scale manufacturing routes for the production of nanowire‐based solar cells have been compared—the direct growth of GaInP nanowires on silicon substrate and the growth of InP nanowires on native substrate, peel off, and transfer to silicon substrate. The analysis revealed critical raw materials and processes of the current lab‐scale manufacturing routes such as the use of trifluoromethane (CHF3), gold, and an InP wafer and a stamp, which are used and discarded. The environmental performance of the two production routes under different scenarios has been assessed. The scenarios include the use of an alternative process to reduce the gold requirements—electroplating instead of metallization, recovery of gold, and reuse of the InP wafer and the stamp. A number of suggestions, based on the LCA results—including minimization of the use of gold and further exploration for upscaling of the electroplating process, the increase in the lifetimes of the wafer and the stamp, and the use of fluorine‐free etching materials—have been communicated to the researchers in order to improve the environmental performance of the technology. Finally, the usefulness and limitations of lab‐scale LCA as a tool to guide the sustainable development of emerging technologies are discussed. 相似文献
Research data management (RDM) requires standards, policies, and guidelines. Findable, accessible, interoperable, and reusable (FAIR) data management is critical for sustainable research. Therefore, collaborative approaches for managing FAIR-structured data are becoming increasingly important for long-term, sustainable RDM. However, they are rather hesitantly applied in bioengineering. One of the reasons may be found in the interdisciplinary character of the research field. In addition, bioengineering as application of principles of biology and tools of process engineering, often have to meet different criteria. In consequence, RDM is complicated by the fact that researchers from different scientific institutions must meet the criteria of their home institution, which can lead to additional conflicts. Therefore, centrally provided general repositories implementing a collaborative approach that enables data storage from the outset In a biotechnology research network with over 20 tandem projects, it was demonstrated how FAIR-RDM can be implemented through a collaborative approach and the use of a data structure. In addition, the importance of a structure within a repository was demonstrated to keep biotechnology research data available throughout the entire data lifecycle. Furthermore, the biotechnology research network highlighted the importance of a structure within a repository to keep research data available throughout the entire data lifecycle. 相似文献
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed. 相似文献
We compared the effects of inhibitors of kinases ATM (KU55933) and ATR (VE-821) (incubated for 30 min before irradiation) on the radiosensitization of human promyelocyte leukaemia cells (HL-60), lacking functional protein p53. VE-821 reduces phosphorylation of check-point kinase 1 at serine 345, and KU55933 reduces phosphorylation of check-point kinase 2 on threonine 68 as assayed 4 h after irradiation by the dose of 6 Gy. Within 24 h after gamma-irradiation with a dose of 3 Gy, the cells accumulated in the G2 phase (67 %) and the number of cells in S phase decreased. KU55933 (10 μM) did not affect the accumulation of cells in G2 phase and did not affect the decrease in the number of cells in S phase after irradiation. VE-821 (2 and 10 μM) reduced the number of irradiated cells in the G2 phase to the level of non-irradiated cells and increased the number of irradiated cells in S phase, compared to irradiated cells not treated with inhibitors. In the 144 h interval after irradiation with 3 Gy, there was a considerable induction of apoptosis in the VE-821 group (10 μM). The repair of the radiation damage, as observed 72 h after irradiation, was more rapid in the group exposed solely to irradiation and in the group treated with KU55933 (80 and 77 % of cells, respectively, were free of DSBs), whereas in the group incubated with 10 μM VE-821, there were only 61 % of cells free of DSBs. The inhibition of kinase ATR with its specific inhibitor VE-821 resulted in a more pronounced radiosensitizing effect in HL-60 cells as compared to the inhibition of kinase ATM with the inhibitor KU55933. In contrast to KU55933, the VE-821 treatment prevented HL-60 cells from undergoing G2 cell cycle arrest. Taken together, we conclude that the ATR kinase inhibition offers a new possibility of radiosensitization of tumour cells lacking functional protein p53. 相似文献
We investigated the genetic differentiation of five X-chromosome STR markers among five native South American Amerindian populations inhabiting three different areas of the Gran Chaco: Mocoví, Chorote, Wichí, Lengua, and Ayoreo. The observed genetic structure showed correspondence with geographic distribution more clearly than previous information obtained from autosomal STRs for the same samples. On the other hand, X-chromosome STR data did not agree with linguistic affinities. These markers proved to be informative for the study of the native populations of the Gran Chaco region. 相似文献
Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.