首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   47篇
  894篇
  2023年   8篇
  2022年   5篇
  2021年   13篇
  2020年   7篇
  2019年   8篇
  2018年   14篇
  2017年   23篇
  2016年   20篇
  2015年   32篇
  2014年   22篇
  2013年   24篇
  2012年   33篇
  2011年   38篇
  2010年   22篇
  2009年   23篇
  2008年   25篇
  2007年   21篇
  2006年   24篇
  2005年   136篇
  2004年   105篇
  2003年   82篇
  2002年   26篇
  2001年   15篇
  2000年   20篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   9篇
  1990年   10篇
  1988年   6篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1981年   3篇
  1979年   13篇
  1975年   3篇
  1973年   6篇
  1972年   2篇
  1971年   4篇
  1969年   7篇
  1965年   2篇
  1902年   2篇
  1873年   2篇
排序方式: 共有894条查询结果,搜索用时 15 毫秒
11.
The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the mitogen-activated protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for the IBD that evolved from the genetic algorithm. The evolved IBD not only exhibited the required non-monotonic signal strength-response, but also demonstrated transient and sustained responses that properly reflected the input signal strength, dependence on both of the MAPKKs for signaling, phosphorylation site preferences by each of the MAPKKs, and both activation and inhibition resulting from the overexpression of one of the MAPKKs.  相似文献   
12.
Lill G  Voit S  Schrör K  Weber AA 《FEBS letters》2003,546(2-3):265-270
Epigallocatechin gallate (EGCG), a major component of green tea, has been previously shown to inhibit platelet aggregation. The effects of other green tea catechins on platelet function are not known. Pre-incubation with EGCG concentration-dependently inhibited thrombin-induced aggregation and phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases-1/2. In contrast EGCG stimulated tyrosine phosphorylation of platelet proteins, including Syk and SLP-76 but inhibited phosphorylation of focal adhesion kinase. Other catechins did not inhibit platelet aggregation. Interestingly, when EGCG was added to stirred platelets, a tyrosine kinase-dependent stimulation of platelet aggregation was observed. The two other catechins containing a galloyl group in the 3' position (catechin gallate, epicatechin gallate) also stimulated platelet aggregation, while catechins without a galloyl group (catechin, epicatechin) or the catechin with a galloyl group in the 2' position (epigallocatechin) did not.  相似文献   
13.
In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.  相似文献   
14.

Background

The recent availability of whole-exome sequencing has opened new possibilities for the evaluation of individuals with genetically undiagnosed intellectual disability.

Results

We report two affected siblings, offspring of first-cousin parents, with intellectual disability, hypotonia, short stature, growth hormone deficiency, and delayed bone age. All members of the nuclear family were genotyped, and exome sequencing was performed in one of the affected individuals. We used an in-house algorithm (CATCH v1.1) that combines homozygosity mapping with exome sequencing results and provides a list of candidate variants. One identified novel homozygous missense variant in KALRN (NM_003947.4:c.3644C>A: p.(Thr1215Lys)) was predicted to be pathogenic by all pathogenicity prediction software used (SIFT, PolyPhen, Mutation Taster). KALRN encodes the protein kalirin, which is a GTP-exchange factor protein with a reported role in cytoskeletal remodeling and dendritic spine formation in neurons. It is known that mice with ablation of Kalrn exhibit age-dependent functional deficits and behavioral phenotypes.

Conclusion

Exome sequencing provided initial evidence linking KALRN to monogenic intellectual disability in man, and we propose that KALRN is the causative gene for the autosomal recessive phenotype in this family.
  相似文献   
15.
16.
17.
18.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   
19.
The changes in intracellular oxygen tension and energy metabolism of the cat brain cortex were studied by surface fluororeflectometry during haemorrhagic shock. The results may be summarized as follows. (a) Intracellular oxygen tension, i.e. the maximum cortical NAD reduction obtained during nitrogen gas inhalation decreased gradually during the hypovolaemic phase of shock and finally, the brain cortex became ischaemic. (b) Partial uncoupling of the cerebrocortical mitochondrial respiration and oxidative phosphorylation appeared in the very early period of bleeding, as indicated by the overshot of the cortical NAD/NADH redox state towards oxidation subsequent to the cessation of nitrogen gas inhalation. Partial uncoupling of mitochondrial respiration and oxidative phosphorylation became more pronounced during the later phases of bleeding, finally, the mitochondrial electron transport stopped. In line with these changes the frequency and the amplitude of ECoG decreased gradually and markedly during the hypovolaemic phase of shock. (c) Microcirculation and energy metabolism of the cat brain cortex were severely and irreversibly damaged during the hypovolaemic phase of shock. This was clearly shown by the fact that in the majority of experiments the nitrogen anoxia after reinfusion failed to bring about changes in the cortical NAD/NADH redox state and the ECoG changes occurred during bleeding did not improve after reinfusion. It is concluded that the early disturbances of cerebrocortical energy metabolism play an important role in the development of neural and vascular lesions of the brain that occur during haemorrhagic shock.  相似文献   
20.
Analogs of pregnanolone (3α-hydroxy-5β-pregnan-20-one), modified in position 17 were prepared. Compounds with 20-keto pregnane side chain replaced completely by azide (17α- and 17β-azido-5β-androstan-3α-ol), compounds with its part replaced (20-azido-21-nor-5β-pregnan-3α-ol), and compounds with keto group only replaced ((20R)- and (20S)-20-azido-5β-pregnan-3α-ol) were synthesized using tosylate displacements with sodium azide or Mitsunobu reaction with azoimide. All five azido steroids were converted into corresponding sulfates. Subsequent tests for inhibition of glutamate induced response on NMDA receptors revealed that modification of pregnanolone sulfate side chain with azide did not disturb the activity and some of sulfates tested were more active than parent compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号