首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1993年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
Neurotrophins are structurally related growth polypeptide factors that play an essential role in the development and functioning of the vertebrate nervous system. They provide forming and survival of different neuron populations of the central and peripheral nervous system. Neurotrophins are also involved in the processes of higher nervous activity. Neurotrophins are active not only in the nervous system; these universal trophic factors are important for the development, proliferation, and maintaining of different tissues including tumor tissues. Changes in the neurotrophin signaling system are significant for the pathogenesis of malignancies at the initiation stage as well as during the tumor progression. Neurotrophins and their receptors are complex multi-component system controlled in a very complicated manner. This system can affect the cells and tissues in different ways; the final results of neurotrophin action vary from cell maintenance and survival to apoptosis. Differences in mechanisms and results of the neurotrophin action depend on the cell and tissue type in which the system works. The effects of the neurotrophin signaling are especially variable in different malignancies. In the review we summarize the information on the neurotrophin signaling in various tumors and demonstrate its contribution to the disease course.  相似文献   
22.
23.
24.
A rare nucleotide substitution was found in the evolutionarily conserved loop of hairpin 35 of the 18S rRNA gene of marine free-living nematode, Trefusia zostericola (Nematoda: Enoplida). The same substitution was found in all the marine Enoplida studied but not in other nematodes. Such a molecular synapomorphy indicates that marine enoplids are more closely related to T. zostericola than to freshwater Triplonchida. Maximum parsimony, neighbor-joining, and maximum likelihood analyses of complete nucleotide sequences of the gene, with the heterogeneity of nucleotide sites in evolution rates taken into account, support this conclusion. Hence, the hypothesis of particular primitiveness of Trefusiidae among nematodes should be rejected. Phylogenies based on molecular data support the morphological reduction of metanemes in Trefusiidae. Alongside with the unique change in hairpin 35 loop among marine Enoplida (including T. zostericola), hairpin 48 is also modified by a rare transversion which could be found among Mesorhabditoidea nematodes, in related genera Pelodera, Mesorhabditis, Teratorhabditis, Parasitorhabditis, Crustorhabditis, and Distolabrellus, and in 11 orders of Rhodophyta. Rare mutations in hairpins 35 and 48 tend to be fixed correlatively in evolution and could be found in all the Acanthocephala species. X-Ray data show that these regions (H31 and H43, in alternative nomenclature) are spatially brought together in native ribosomes. The nature and distribution of molecular autoapomorphies in phylogenetic trees of high-rank taxa are discussed.  相似文献   
25.
Estimates of tag retention and tagging-related mortality are essential for mark-recapture experiments. Mortality and tag loss were estimated from 15 tigerfish Hydrocynus vittatus marked using Hallmark model PDL plastic-tipped dart tags released into a 1 730 m2 pond at Kamutjonga Inland Fisheries Institute, Namibia, and inspected bi-monthly for the presence or absence of tags. No mortality was observed during the experiment. All marked fish had lost their tags after 10 months and 50% tag loss was estimated at 3.9 months. The high tag loss rate indicates that PDL plastic-tipped dart tags are not suitable for long-term studies on this species.  相似文献   
26.
Repeated DNA sequences of mosquitoes were studied by using of reassociation kinetics, molecular hybridization, restriction analysis and Southern blot-hybridization. Mosquitoes of two genera, the species of one of them being sibling species, were investigated. The content of all repeated families is the same both in sibling species and in species of different genera DNA. The percent of homologous sequences is low as compared to the high thermal stability of heterologous duplexes both in sibling species DNA and in different genera DNA. Restriction analysis of DNA and blot-hybridization with 35S repeated fraction revealed certain specific families of repeated sequences in the DNA of sibling species and of different genera of mosquitoes.  相似文献   
27.

Background  

The SLC11A1/Nramp1 and SLC11A2/Nramp2 genes belong to the SLC11/Nramp family of transmembrane divalent metal transporters, with SLC11A1 being associated with resistance to pathogens and SLC11A2 involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the SLC11 gene family have been clearly identified in tetrapods; however SLC11A1 has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the SLC11 genes in teleosts and evaluated if the roles attributed to mammalian SLC11 genes are assured by other fish specific SLC11 gene members.  相似文献   
28.
Gastrotrichs are meiobenthic free-living aquatic worms whose phylogenetic and intra-group relationships remain unclear despite some attempts to resolve them on the base of morphology or molecules. In this study we analysed complete sequences of the 18S rRNA gene of 15 taxa (8 new and 7 published) to test numerous hypotheses on gastrotrich phylogeny and to verify whether controversial interrelationships from previous molecular data could be due to the short region available for analysis and the poor taxa sampling. Data were analysed using both maximum likelihood and Bayesian inference. Results obtained suggest that gastrotrichs, together with Gnathostomulida, Plathelminthes, Syndermata (Rotifera + Acanthocephala), Nemertea and Lophotrochozoa, comprise a clade Spiralia. Statistical tests reject phylogenetic hypotheses regarding Gastrotricha as close relatives of Nematoda and other Ecdysozoa or placing them at the base of bilaterian tree close to acoels and nemertodermatides. Within Gastrotricha, Chaetonotida and Macrodasyida comprise two well supported clades. Our analysis confirmed the monophyly of the Chaetonotidae and Xenotrichulidae within Chaetonida as well as Turbanellidae and Thaumastodermatidae within Macrodasyida. Mesodasys is a sister group of the Turbanellidae, and Lepidodasyidae appears to be a polyphyletic group as Cephalodasys forms a separate lineage at the base of macrodasyids, whereas Lepidodasys groups with Neodasys between Thaumastodermatidae and Turbanellidae. To infer a more reliable Gastrotricha phylogeny many species and additional genes should be involved in future analyses.  相似文献   
29.

Background  

A number of algorithms have been developed for calculating the quartet distance between two evolutionary trees on the same set of species. The quartet distance is the number of quartets – sub-trees induced by four leaves – that differs between the trees. Mostly, these algorithms are restricted to work on binary trees, but recently we have developed algorithms that work on trees of arbitrary degree.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号