首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   2篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2014年   4篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   12篇
  2005年   8篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1998年   4篇
  1996年   2篇
  1992年   8篇
  1991年   14篇
  1990年   17篇
  1989年   16篇
  1988年   15篇
  1987年   12篇
  1986年   11篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1972年   7篇
  1971年   4篇
  1970年   4篇
  1969年   3篇
  1968年   7篇
  1967年   5篇
  1966年   5篇
  1965年   4篇
  1961年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
81.
Diurnal fluctuations of endogenous RNA polymerases activity were studied in the cell nucleus of the cerebral stem and spinal nervous system populations (neurocytes of the hypothalamic suprachiasmatic nuclei, superior cervical ganglia, spinal ganglia L5, motoneurones of the spinal cord and Purkinje cells) were revealed. The acrophases of the visual cortex neurones were observed just before light reception.  相似文献   
82.
The role of endogenous porphyrins in the effects of laser radiation of the red region (632.8 nm) on free radical processes in the blood of rats under endotoxic shock induced by the administration of lipopolysaccharide B (25 mg/kg) has been studied. The measurements of the functional activity of polymorphonuclear leukocytes (the method of luminol-dependent chemiluminescence), the superoxide dismutase activity of blood plasma (using nitro blue tetrazolium), and the degree of lipid oxidation of erythrocyte membranes (the method of fluorescence of cis-parinaric acid) have been carried out. It has been found that low-intensity laser radiation strongly affects all processes examined irrespective of the administration of lipopolysaccharide B. The effect of radiation was most pronounced in animals injected with the polysaccharide, the changes being dependent on the concentration of endogenous porphyrins in samples.  相似文献   
83.
BackgroundNon-cholesterol sterols (NCS) are promising biomarkers for estimation of cholesterol homeostasis properties. In addition, determination of NCS in high-density lipoprotein (HDL) fraction (HDL-NCS) could provide information on cholesterol efflux. However, matrix effects interfere in liquid chromatography-mass spectrometry (LC-MS) analysis of NCS, thereby impairing the method sensitivity. The aims of this study were development, optimization and validation of LC-MS method for quantification of NCS in serum and HDL-NCS. Additionally, matrix effect interferences and methods application in individual serum samples were examined.MethodsHDL precipitating reagent was used for HDL isolation. Matrix effect was examined by comparing different surrogates by simple regression analysis. Validation was conducted according to the FDA-ICH guideline. 20 healthy volunteers were recruited for testing of method application.ResultsThe observed matrix effect was 30%, and matrix comparison showed that cholesterol was the dominant contributor to the matrix effect. Cholesterol concentration was adjusted by construction of the calibration curve for serum and HDL fraction (5 mmol/L and 2.5 mmol/L, respectively). The intraand interrun variabilities for NCSs were 4.7-10.3% for serum NCS and 3.6-13.6% for HDLNCS and 4.6-9.5% for serum NCSs and 2.5-9.8% for HDL-NCS, respectively. Recovery studies showed satisfactory results for NCSs: 89.8-113.1% for serum NCS and 85.3-95.8% for HDL-NCS.ConclusionsThe method was successfully developed and optimized. The matrix interference was solved by customising calibration curves for each method and sample type. The measurement of NCS in HDL fraction was proposed for the first time as potentially useful procedure in biomedical researches.  相似文献   
84.
Lucigenin-enhanced chemiluminescence (LcCL) allows one to investigate the reactions of superoxide anion radical (*O2-) generated by mitochondria and is applied to study the superoxide production in enzymatic and membrane systems by isolated mitochondria and cells, and in whole organs. The application of lucigenin-enhanced chemiluminescence to estimate the respiration of human tissues involves the use of small tissue pieces, which can be obtained, for instance, by biopsia; however, no systematic investigations have been performed on these objects. In the present paper, a comparative study of lucigenin-enhanced chemiluminescence of tissues isolated from different organs of the rat was carried out to elucidate its dependence on the extent of tissue defragmentation, storage time, and access for oxygen. It was shown that the addition of lucigenin to a piece of tissue, a suspension of fine tissue fragments, and homogenates greatly enhanced chemiluminescence, and a whole piece of tissue possessed a much lesser (by 1-1.5 order of magnitude) intensity of chemiluminescence than homogenate or gruel. In the absence of stirring of the surrounding solution, the lucigenin-enhanced chemiluminescence of tissue quickly decreased, apparently due to a decrease in the level of oxygen in the tissue, as the result of its consumption. The chemiluminescence consisted of two components: a lucigenin-dependent and lucigenin-independent one (intrinsic chemiluminescence). Thus, the tissue was a source of lucigenin-enhanced chemiluminescence, and this luminescence was observed only at a sufficient access for oxygen. The lucigenin-independent component did not practically depend on oxygen and was determined by the components coming out of the tissue into the surrounding solution. Nitric oxide (NO) inhibited chemiluminescence as its concentration increased and did not affect considerably the rate of oxygen consumption by the tissue. The results obtained allow one to conclude that lucigenin can be used as a rather effective chemiluminescent probe for the production of superoxide radicals by tissue pieces.  相似文献   
85.
It has recently been shown that nitrosyl complexes of hemoglobin (NO-Hb) are sensitive to low-level blue laser irradiation, suggesting that laser irradiation can facilitate the release of biologically active nitric oxide (NO), which can affect tissue perfusion. The aim of this study was to evaluate the therapeutic value of blue laser irradiation for local tissue perfusion after surgical intervention. Blood was withdrawn from a rat, exposed to NO and infused back to the same rat or used for in vitro experiments. In vitro, an increase of NO-Hb levels (electron paramagnetic resonance spectroscopy) up to 15 microM in rat blood did not result in the release of detectable amounts of NO (NO selective electrode). Blue laser irradiation of NO-Hb in blood caused decomposition of NO-Hb complexes and release of free NO. Systemic infusion of NO-Hb in rats affected neither systemic circulation (mean arterial pressure) nor local tissue perfusion (Doppler blood flow imaging system). In contrast, a clear enhancement of local tissue perfusion was observed in epigastric flap when elevated NO-Hb levels in blood were combined with local He-Cd laser irradiation focused on the left epigastric artery. The enhancement of regional tissue perfusion was not accompanied by any detectable changes in systemic circulation. This study demonstrates that blue laser irradiation improves local tissue perfusion in a controlled manner stimulating NO release from NO-Hb complexes.  相似文献   
86.
The effect of low-intensity laser radiation of the blue (441.2 nm), green (532 nm), and red (632.8 nm) spectral regions on the healing of experimental skin wounds in rats has been studied. The effect of the traditionally applied laser radiation in the red region has been compared with the effect of laser radiation in the other spectral regions, assuming that, upon irradiation of wounds by lasers emitting in the blue and green regions, a similar effect can be achieved at lower doses. The following parameters characterizing the healing of experimental wounds were used: the functional activity of phagocytes of wound exudates, which was determined by luminol-dependent chemiluminescence, and their number; the antioxidant activity of wound exudates; and the rate of healing, which was determined as a change in the wound area. It was shown that irradiation with laser accelerated the healing of wounds in all cases. The exposure to laser radiations in the red (1.5 J/cm), blue, and green (0.75 J/cm2) spectral regions shortened the time of wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes after the exposure increased on day 5 after the infliction of the wound, whereas in the control it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after the operation. A maximum increase in the superoxide dismutase activity occurred after the exposure to laser radiation in the red region at a dose of 1.5 J/cm and in the blue and green spectral regions at a dose of 0.75 J/cm2.  相似文献   
87.
Simulation of cellular behavior on multiple scales requires models that are sufficiently detailed to capture central intracellular processes but at the same time enable the simulation of entire cell populations in a computationally cheap way. In this paper we present RapidCell, a hybrid model of chemotactic Escherichia coli that combines the Monod-Wyman-Changeux signal processing by mixed chemoreceptor clusters, the adaptation dynamics described by ordinary differential equations, and a detailed model of cell tumbling. Our model dramatically reduces computational costs and allows the highly efficient simulation of E. coli chemotaxis. We use the model to investigate chemotaxis in different gradients, and suggest a new, constant-activity type of gradient to systematically study chemotactic behavior of virtual bacteria. Using the unique properties of this gradient, we show that optimal chemotaxis is observed in a narrow range of CheA kinase activity, where concentration of the response regulator CheY-P falls into the operating range of flagellar motors. Our simulations also confirm that the CheB phosphorylation feedback improves chemotactic efficiency by shifting the average CheY-P concentration to fit the motor operating range. Our results suggest that in liquid media the variability in adaptation times among cells may be evolutionary favorable to ensure coexistence of subpopulations that will be optimally tactic in different gradients. However, in a porous medium (agar) such variability appears to be less important, because agar structure poses mainly negative selection against subpopulations with low levels of adaptation enzymes. RapidCell is available from the authors upon request.  相似文献   
88.
Soil-transmitted helminths (STH) are the most prevalent pathogens among the group of neglected tropical diseases (NTDs). The Kato-Katz technique is the diagnosis method recommended by the World Health Organization (WHO) although it often presents a decreased sensitivity in low transmission settings and it is labour intensive. Visual reading of Kato-Katz preparations requires the samples to be analyzed in a short period of time since its preparation. Digitizing the samples could provide a solution which allows to store the samples in a digital database and perform remote analysis. Artificial intelligence (AI) methods based on digitized samples can support diagnosis by performing an objective and automatic quantification of disease infection. In this work, we propose an end-to-end pipeline for microscopy image digitization and automatic analysis of digitized images of STH. Our solution includes (a) a digitization system based on a mobile app that digitizes microscope samples using a 3D printed microscope adapter, (b) a telemedicine platform for remote analysis and labelling, and (c) novel deep learning algorithms for automatic assessment and quantification of parasitological infections by STH. The deep learning algorithm has been trained and tested on 51 slides of stool samples containing 949 Trichuris spp. eggs from 6 different subjects. The algorithm evaluation was performed using a cross-validation strategy, obtaining a mean precision of 98.44% and a mean recall of 80.94%. The results also proved the potential of generalization capability of the method at identifying different types of helminth eggs. Additionally, the AI-assisted quantification of STH based on digitized samples has been compared to the one performed using conventional microscopy, showing a good agreement between measurements. In conclusion, this work has presented a comprehensive pipeline using smartphone-assisted microscopy. It is integrated with a telemedicine platform for automatic image analysis and quantification of STH infection using AI models.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号