首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6313篇
  免费   436篇
  国内免费   9篇
  6758篇
  2023年   23篇
  2022年   61篇
  2021年   124篇
  2020年   63篇
  2019年   113篇
  2018年   149篇
  2017年   123篇
  2016年   147篇
  2015年   279篇
  2014年   278篇
  2013年   411篇
  2012年   488篇
  2011年   529篇
  2010年   316篇
  2009年   283篇
  2008年   434篇
  2007年   423篇
  2006年   416篇
  2005年   364篇
  2004年   348篇
  2003年   319篇
  2002年   311篇
  2001年   57篇
  2000年   56篇
  1999年   69篇
  1998年   100篇
  1997年   33篇
  1996年   51篇
  1995年   37篇
  1994年   32篇
  1993年   30篇
  1992年   33篇
  1991年   21篇
  1990年   23篇
  1989年   17篇
  1988年   13篇
  1987年   7篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   22篇
  1981年   13篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   10篇
排序方式: 共有6758条查询结果,搜索用时 25 毫秒
951.
The small-angle x-ray scattering (SAXS) technique is used for the investigation of two-stage equilibrium macromolecular interactions of the enzyme-substrate type in solution. Experimental procedures and methods of analyzing the data obtained from SAXS have been elaborated. The algorithm for the data analysis allows one to determine the stoichiometric, equilibrium, and structural parameters of the enzyme-substrate complexes obtained. The thermodynamic characteristics for the formation of complexes of double-stranded oligonucleotide with Eco dam methyltransferase (MTase) have been determined and demonstrate a high cooperativity of MTase binding when the ternary complex containing the dimeric enzyme is formed. The structural parameters (Rg, Rc, semiaxes) have been determined for free enzyme and polynucleotides and of enzyme-substrate complexes, indicating structural rearrangements of the enzyme in the interaction with substrates. © 1996 John Wiley & Sons, Inc.  相似文献   
952.
Porphobilinogen deaminase (PBGD) catalyses the polymerization of four molecules of porphobilinogen to form the 1-hydroxymethylbilane, preuroporphyrinogen, a key intermediate in the biosynthesis of tetrapyrroles. The three-dimensional structure of wild-type PBGD from Escherichia coli has been determined by multiple isomorphous replacement and refined to a crystallographic R-factor of 0.188 at 1.76 Å resolution. The polypeptide chain of PBGD is folded into three α/β domains. Domains 1 and 2 have a similar overall topology, based on a five-stranded, mixed β-sheet. These two domains, which are linked by two hinge segments but otherwise make few direct interactions, form an extensive active site cleft at their interface. Domain 3, an open-faced, anti-parallel sheet of three strands, interacts approximately equally with the other two domains. The dipyrromethane cofactor is covalently attached to a cysteine side-chain borne on a flexible loop of domain 3. The cofactor serves as a primer for the assembly of the tetrapyrrole product and is held within the active site cleft by hydrogen-bonds and salt-bridges that are formed between its acetate and propionate side-groups and the polypeptide chain. The structure of a variant of PBGD, in which the methionines have been replaced with selenomethionines, has also been determined. The cofactor, in the native and functional form of the enzyme, adopts a conformation in which the second pyrrole ring (C2) occupies an internal position in the active site cleft. On oxidation, however, this C2 ring of the cofactor adopts a more external position that may correspond approximately to the site of substrate binding and polypyrrole chain elongation. The side-chain of Asp84 hydrogen-bonds the hydrogen atoms of both cofactor pyrrole nitrogens and also potentially the hydrogen atom of the pyrrole nitrogen of the porphobilinogen molecule bound to the proposed substrate binding site. This group has a key catalytic role, possibly in stabilizing the positive charges that develop on the pyrrole nitrogens during the ring-coupling reactions. Possible mechanisms for the processive elongation of the polypyrrole chain involve: accommodation of the elongating chain within the active site cleft, coupled with shifts in the relative positions of domains 1 and 2 to carry the terminal ring into the appropriate position at the catalytic site; or sequential translocation of the elongating polypyrrole chain, attached to the cofactor on domain 3, through the active site cleft by the progressive movement of domain 3 with respect to domains 1 and 2. Other mechanisms are considered although the amino acid sequence comparisons between PBGDs from all species suggest they share the same three-dimensional structure and mechanism of activity. © 1996 Wiley-Liss, Inc.  相似文献   
953.
A method is described to dock a ligand into a binding site in a protein on the basis of the complementarity of the inter-molecular atomic contacts. Docking is performed by maximization of a complementarity function that is dependent on atomic contact surface area and the chemical properties of the contacting atoms. The generality and simplicity of the complementarity function ensure that a wide range of chemical structures can be handled. The ligand and the protein are treated as rigid bodies, but displacement of a small number of residues lining the ligand binding site can be taken into account. The method can assist in the design of improved ligands by indicating what changes in complementarity may occur as a result of the substitution of an atom in the ligand. The capabilities of the method are demonstrated by application to 14 protein–ligand complexes of known crystal structure. © 1996 Wiley Liss, Inc.  相似文献   
954.
955.
Interrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.  相似文献   
956.
Hemoglobin and myoglobin are inducers of low-density lipoprotein oxidation in the presence of H(2)O(2). The reaction of these hemoproteins with H(2)O(2) result in a mixture of protein products known as hemichromes. The oxygen-binding hemoproteins function as peroxidases but as compared to classic heme-peroxidases have a much lower activity on small sized and a higher one on large sized substrates. A heme-globin covalent adduct, a component identified in myoglobin-hemichrome, was reported to be the cause of myoglobin peroxidase activity on low-density lipoprotein. In this study, we analyzed the function of hemoglobin-hemichrome in low-density lipoprotein oxidation. Oxidation of lipids was analyzed by formation of conjugated diene and malondialdehyde; and oxidation of Apo-B protein was analyzed by development of bityrosine fluorescence and covalently cross-linked protein. Hemoglobin-hemichrome has indeed triggered oxidation of both lipids and protein, but unlike myoglobin, hemichrome has required the presence of H(2)O(2). In correlation to this, we found that unlike myoglobin, hemichrome formed by hemoglobin/H(2)O(2) does not contain a globin-heme covalent adduct. Nevertheless, hemoglobin-hemichrome remains oxidatively active towards LDL, indicating that other components of the oxidatively denatured hemoglobin should be considered responsible for its hazardous activity in vascular pathology.  相似文献   
957.
The study of backbone and side-chain internal motions in proteins and peptides is crucial to having a better understanding of protein/peptide "structure" and to characterizing unfolded and partially folded states of proteins and peptides. To achieve this, however, requires establishing a baseline for internal motions and motional restrictions for all residues in the fully, solvent-exposed "unfolded state." GXG-based tripeptides are the simpliest peptides where residue X is fully solvent exposed in the context of an actual peptide. In this study, a series of GXG-based tripeptides has been synthesized with X being varied to include all twenty common amino acid residues. Proton-coupled and -decoupled (13)C-nmr relaxation measurements have been performed on these twenty tripeptides and various motional models (Lipari-Szabo model free approach, rotational anisotropic diffusion, rotational fluctuations within a potential well, rotational jump model) have been used to analyze relaxation data for derivation of angular variances and motional correlation times for backbone and side-chain chi(1) and chi(2) bonds and methyl group rotations. At 298 K, backbone motional correlation times range from about 50 to 85 ps, whereas side-chain motional correlation times show a much broader spread from about 18 to 80 ps. Angular variances for backbone phi,psi bond rotations range from 11 degrees to 23 degrees and those for side chains vary from 5 degrees to 24 degrees for chi(1) bond rotations and from 5 degrees to 27 degrees for chi(2) bond rotations. Even in these peptide models of the "unfolded state," side-chain angular variances can be as restricted as those for backbone and beta-branched (valine, threonine, and isoleucine) and aromatic side chains display the most restricted motions probably due to steric hinderence with backbone atoms. Comparison with motional data on residues in partially folded, beta-sheet-forming peptides indicates that side-chain motions of at least hydrophobic residues are less restricted in the partially folded state, suggesting that an increase in side-chain conformational entropy may help drive early-stage protein folding. Copyright 1999 John Wiley & Sons, Inc.  相似文献   
958.
Summary.  The aim of this work was to study the activity of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) in the regeneration of lipophilic antioxidants, alpha-tocopherol, and reduced-coenzyme Q analogs. First, we tested whether or not two isoforms of the NAD(P)H:(quinone acceptor) oxidoreductase 1 designated as “hydrophilic” and “hydrophobic” (H. J. Prochaska and P. Talalay, Journal of Biological Chemistry 261: 1372–1378, 1986) show differential enzyme activities towards hydrophilic or hydrophobic ubiquinone homologs. By chromatography on phenyl Sepharose, we purified the two isoforms from pig liver cytosol and measured their reduction of several ubiquinone homologs of different side chain length. We also studied by electron paramagnetic resonance the effect of NAD(P)H:(quinone acceptor) oxidoreductase 1 on steady-state levels of chromanoxyl radicals generated by linoleic acid and lipooxygenase and confirmed the enzyme's ability to protect alpha-tocopherol against oxidation induced with H2O2-Fe2+. Our results demonstrated that the different hydrophobicities of the isoforms do not reflect different reactivities towards ubiquinones of different side chain length. In addition, electron paramagnetic resonance studies showed that in systems containing the reductase plus NADH, levels of chromanoxyl radicals were dramatically reduced. Morever, in the presence of oxidants, alpha-tocopherol was preserved by NAD(P)H:(quinone acceptor) oxidoreductase 1, supporting our hypothesis that regeneration of alpha-tocopherol may be one of the physiologic functions of this enzyme. Received May 20, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   
959.
The utility of the disposition index as a measure of beta-cell compensatory capacity rests on the established hyperbolic relationship between its component insulin secretion and sensitivity measures as derived from the intravenous glucose tolerance test (IVGTT). If one is to derive an analogous measure of beta-cell compensation from the oral glucose tolerance test (OGTT), it is thus necessary to first establish the existence of this hyperbolic relationship between OGTT-based measures of insulin secretion and insulin sensitivity. In this context, we tested five OGTT-based measures of secretion (insulinogenic index, Stumvoll first phase, Stumvoll second phase, ratio of total area-under-the-insulin-curve to area-under-the-glucose-curve (AUC(ins/gluc)), and incremental AUC(ins/gluc)) with two measures of sensitivity (Matsuda index and 1/Homeostasis Model of Assessment for insulin resistance (HOMA-IR)). Using a model of log(secretion measure) = constant + beta x log(sensitivity measure), a hyperbolic relationship can be established if beta is approximately equal to -1, with 95% confidence interval (CI) excluding 0. In 277 women with normal glucose tolerance (NGT), the pairing of total AUC(ins/gluc) and Matsuda index was the only combination that satisfied these criteria (beta = -0.99, 95% CI (-1.66, -0.33)). This pairing also satisfied hyperbolic criteria in 53 women with impaired glucose tolerance (IGT) (beta = -1.02, (-1.72, -0.32)). In a separate data set, this pairing yielded distinct hyperbolae for NGT (n = 245) (beta = -0.99, (-1.67, -0.32)), IGT (n = 116) (beta = -1.18, (-1.84, -0.53)), and diabetes (n = 43) (beta = -1.37, (-2.46, -0.29)). Moreover, the product of AUC(ins/gluc) and Matsuda index progressively decreased from NGT (212) to IGT (193) to diabetes (104) (P < 0.001), consistent with declining beta-cell function. In summary, a hyperbolic relationship can be demonstrated between OGTT-derived AUC(ins/gluc) and Matsuda index across a range of glucose tolerance. Based on these findings, the product of these two indices emerges as a potential OGTT-based measure of beta-cell function.  相似文献   
960.
Cytotoxic exogenous RNases triggering apoptotic response in malignant cells have potential as anticancer drugs; surprisingly, detailed characterization of the RNase-induced apoptosis has not been conducted so far. Here we show that a cytotoxic RNase from Bacillus intermedius (binase) induces extrinsic and intrinsic apoptotic pathways in leukemic Kasumi-1 cells. The experiments were performed using TaqMan Array Human Apoptosis 96-well Plate for gene expression analysis, and flow cytometry. Cytometric studies demonstrated dissipation of the mitochondrial membrane potential, opening of mitochondrial permeability transition pores, activation of caspases, increase of intracellular Ca2+ and decrease of reactive oxygen species levels. We found that expression of 62 apoptotic genes is up-regulated, including 16 genes that are highly up-regulated, and only one gene was found to be down-regulated. The highest, 16 fold increase of the expression level was observed for TNF gene. Highly up-regulated genes also include the non-canonical NF-κB signaling pathway and inflammatory caspases 1,4. The obtained results suggest that binase induces evolutionary acquired cellular response to a microbial agent and triggers unusual apoptosis pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号