首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5857篇
  免费   409篇
  国内免费   9篇
  6275篇
  2023年   19篇
  2022年   53篇
  2021年   115篇
  2020年   59篇
  2019年   98篇
  2018年   136篇
  2017年   113篇
  2016年   134篇
  2015年   257篇
  2014年   251篇
  2013年   375篇
  2012年   459篇
  2011年   502篇
  2010年   288篇
  2009年   261篇
  2008年   408篇
  2007年   394篇
  2006年   403篇
  2005年   349篇
  2004年   330篇
  2003年   304篇
  2002年   300篇
  2001年   44篇
  2000年   38篇
  1999年   61篇
  1998年   96篇
  1997年   30篇
  1996年   49篇
  1995年   35篇
  1994年   31篇
  1993年   30篇
  1992年   30篇
  1991年   20篇
  1990年   19篇
  1989年   13篇
  1988年   10篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   12篇
  1983年   7篇
  1982年   22篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
排序方式: 共有6275条查询结果,搜索用时 0 毫秒
151.

Data centers, clusters, and grids have historically supported High-Performance Computing (HPC) applications. Due to the high capital and operational expenditures associated with such infrastructures, we have witnessed consistent efforts to run HPC applications in the cloud in the recent past. The potential advantages of this shift include higher scalability and lower costs. If, on the one hand, app instantiation—through customized Virtual Machines (VMs)—is a well-solved issue, on the other, the network still represents a significant bottleneck. When switching HPC applications to be executed on the cloud, we lose control of where VMs will be positioned and of the paths that will be traversed for processes to communicate with one another. To bridge this gap, we present Janus, a framework for dynamic, just-in-time path provisioning in cloud infrastructures. By leveraging emerging software-defined networking principles, the framework allows for an HPC application, once deployed, to have interprocess communication paths configured upon usage based on least-used network links (instead of resorting to shortest, pre-computed paths). Janus is fully configurable to cope with different operating parameters and communication strategies, providing a rich ecosystem for application execution speed up. Through an extensive experimental evaluation, we provide evidence that the proposed framework can lead to significant gains regarding runtime. Moreover, we show what one can expect in terms of system overheads, providing essential insights on how better benefiting from Janus.

  相似文献   
152.
Here we propose a bio-MEMS device designed to evaluate contractile force and conduction velocity of cell sheets in response to mechanical and electrical stimulation of the cell source as it grows to form a cellular sheet. Moreover, the design allows for the incorporation of patient-specific data and cell sources. An optimized device would allow cell sheets to be cultured, characterized, and conditioned to be compatible with a specific patient's cardiac environment in vitro, before implantation. This design draws upon existing methods in the literature but makes an important advance by combining the mechanical and electrical stimulation into a single system for optimized cell sheet growth. The device has been designed to achieve cellular alignment, electrical stimulation, mechanical stimulation, conduction velocity readout, contraction force readout, and eventually cell sheet release. The platform is a set of comb electrical contacts consisting of three-dimensional walls made of polydimethylsiloxane and coated with electrically conductive metals on the tops of the walls. Not only do the walls serve as a method for stimulating cells that are attached to the top, but their geometry is tailored such that they are flexible enough to be bent by the cells and used to measure force. The platform can be stretched via a linear actuator setup, allowing for simultaneous electrical and mechanical stimulation that can be derived from patient-specific clinical data.  相似文献   
153.
Photosynthesis Research - Tradescantia is a good model for assaying induction events in higher plant leaves. Chlorophyll (Chl) fluorescence serves as a sensitive reporter of the functional state of...  相似文献   
154.
Origins of Life and Evolution of Biospheres - Syntheses under shock in nitrogen bubbled samples of the water – formamide – bicarbonate – sodium hydroxide system at...  相似文献   
155.
Molecular and Cellular Biochemistry - Melatonin is a crucial neurohormone synthesized in the pineal gland that influences the physiology of animals. The molecular mechanism of norepinephrine...  相似文献   
156.
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10–15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.  相似文献   
157.
The small-angle x-ray scattering (SAXS) technique is used for the investigation of two-stage equilibrium macromolecular interactions of the enzyme-substrate type in solution. Experimental procedures and methods of analyzing the data obtained from SAXS have been elaborated. The algorithm for the data analysis allows one to determine the stoichiometric, equilibrium, and structural parameters of the enzyme-substrate complexes obtained. The thermodynamic characteristics for the formation of complexes of double-stranded oligonucleotide with Eco dam methyltransferase (MTase) have been determined and demonstrate a high cooperativity of MTase binding when the ternary complex containing the dimeric enzyme is formed. The structural parameters (Rg, Rc, semiaxes) have been determined for free enzyme and polynucleotides and of enzyme-substrate complexes, indicating structural rearrangements of the enzyme in the interaction with substrates. © 1996 John Wiley & Sons, Inc.  相似文献   
158.
Vaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.1.1.7, B.1.351, and P.1 for their immunogenicity and protective effect in vivo against challenge with wild-type SARS-CoV-2 in the mouse model. All proteins induced high neutralizing antibodies against the respective viruses but also induced high cross-neutralizing antibody responses. The decline in neutralizing titers between variants was moderate, with B.1.1.7-vaccinated animals having a maximum fold reduction of 4.8 against B.1.351 virus. P.1 induced the most cross-reactive antibody responses but was also the least immunogenic in terms of homologous neutralization titers. However, all antigens protected from challenge with wild-type SARS-CoV-2 in a mouse model.

This study explores the immune response induced by wild type and variant SARS-CoV-2 spike proteins, and the protection that these immune responses provide against challenge with wild type virus in the mouse model.  相似文献   
159.
Porphobilinogen deaminase (PBGD) catalyses the polymerization of four molecules of porphobilinogen to form the 1-hydroxymethylbilane, preuroporphyrinogen, a key intermediate in the biosynthesis of tetrapyrroles. The three-dimensional structure of wild-type PBGD from Escherichia coli has been determined by multiple isomorphous replacement and refined to a crystallographic R-factor of 0.188 at 1.76 Å resolution. The polypeptide chain of PBGD is folded into three α/β domains. Domains 1 and 2 have a similar overall topology, based on a five-stranded, mixed β-sheet. These two domains, which are linked by two hinge segments but otherwise make few direct interactions, form an extensive active site cleft at their interface. Domain 3, an open-faced, anti-parallel sheet of three strands, interacts approximately equally with the other two domains. The dipyrromethane cofactor is covalently attached to a cysteine side-chain borne on a flexible loop of domain 3. The cofactor serves as a primer for the assembly of the tetrapyrrole product and is held within the active site cleft by hydrogen-bonds and salt-bridges that are formed between its acetate and propionate side-groups and the polypeptide chain. The structure of a variant of PBGD, in which the methionines have been replaced with selenomethionines, has also been determined. The cofactor, in the native and functional form of the enzyme, adopts a conformation in which the second pyrrole ring (C2) occupies an internal position in the active site cleft. On oxidation, however, this C2 ring of the cofactor adopts a more external position that may correspond approximately to the site of substrate binding and polypyrrole chain elongation. The side-chain of Asp84 hydrogen-bonds the hydrogen atoms of both cofactor pyrrole nitrogens and also potentially the hydrogen atom of the pyrrole nitrogen of the porphobilinogen molecule bound to the proposed substrate binding site. This group has a key catalytic role, possibly in stabilizing the positive charges that develop on the pyrrole nitrogens during the ring-coupling reactions. Possible mechanisms for the processive elongation of the polypyrrole chain involve: accommodation of the elongating chain within the active site cleft, coupled with shifts in the relative positions of domains 1 and 2 to carry the terminal ring into the appropriate position at the catalytic site; or sequential translocation of the elongating polypyrrole chain, attached to the cofactor on domain 3, through the active site cleft by the progressive movement of domain 3 with respect to domains 1 and 2. Other mechanisms are considered although the amino acid sequence comparisons between PBGDs from all species suggest they share the same three-dimensional structure and mechanism of activity. © 1996 Wiley-Liss, Inc.  相似文献   
160.
A method is described to dock a ligand into a binding site in a protein on the basis of the complementarity of the inter-molecular atomic contacts. Docking is performed by maximization of a complementarity function that is dependent on atomic contact surface area and the chemical properties of the contacting atoms. The generality and simplicity of the complementarity function ensure that a wide range of chemical structures can be handled. The ligand and the protein are treated as rigid bodies, but displacement of a small number of residues lining the ligand binding site can be taken into account. The method can assist in the design of improved ligands by indicating what changes in complementarity may occur as a result of the substitution of an atom in the ligand. The capabilities of the method are demonstrated by application to 14 protein–ligand complexes of known crystal structure. © 1996 Wiley Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号