首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17003篇
  免费   1003篇
  国内免费   3篇
  18009篇
  2023年   107篇
  2022年   106篇
  2021年   199篇
  2020年   177篇
  2019年   207篇
  2018年   420篇
  2017年   411篇
  2016年   531篇
  2015年   606篇
  2014年   722篇
  2013年   1120篇
  2012年   1239篇
  2011年   1216篇
  2010年   833篇
  2009年   603篇
  2008年   830篇
  2007年   710篇
  2006年   717篇
  2005年   559篇
  2004年   560篇
  2003年   521篇
  2002年   469篇
  2001年   277篇
  2000年   238篇
  1999年   224篇
  1998年   149篇
  1997年   132篇
  1996年   122篇
  1995年   133篇
  1994年   104篇
  1992年   154篇
  1991年   152篇
  1990年   136篇
  1989年   156篇
  1988年   147篇
  1987年   112篇
  1986年   119篇
  1985年   171篇
  1983年   133篇
  1982年   116篇
  1981年   121篇
  1979年   148篇
  1978年   109篇
  1975年   101篇
  1974年   130篇
  1973年   124篇
  1972年   103篇
  1970年   117篇
  1969年   117篇
  1968年   105篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
251.
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2–5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12–90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.  相似文献   
252.
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B(1) exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B(1) and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers.  相似文献   
253.

Background and Aims

In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed.

Methods

Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization.

Key Results

This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome).

Conclusions

It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution.  相似文献   
254.
Littoral benthic macroinvertebrates of 45 mountain lakes in the Tatra Mountains were sampled using a semi-quantitative method in September 2000. A total of 32,852 specimens were identified to 93 taxa belonging to 14 higher taxonomic groups. Multivariate statistics (CCA, RDA) and nine biotic metrics (AQEM/STAR) were used to explain relationships between macroinvertebrate assemblages and environmental variables. Up to 57% of the ecological position of littoral macroinvertebrate assemblages were explained by variance of environmental variables divided into chemical, trophic, physical, catchment and location. Five types of Tatra lakes were recognized using CCA: A — strongly acidified lakes (small catchment, low pH, high concentration of TP, DOC, highest amount of POM in littoral); B — alpine acidified lakes (low amount of POM, low values of biotic metrics); C — alpine non-acidified lakes (high value of diversity index, predominance of Diptera); D — subalpine acidified lakes (high values of biotic metrics: number of families, proportion of crenal and rhithral taxa/total taxa); E — subalpine non-acidified lakes (high values of biotic metrics: number of families, number of genera, BMWP score, number of taxa and abundance of EPT taxa). RDA was used to design five levels of macroinvertebrate taxa acidification tolerance. The Tatra Acidification Index (TAI) was established to assess the acidification status of the lakes in the Tatra Mts.  相似文献   
255.
Colchicum autumnale L. is a monocotyledonous geophyte with hysteranthous leaves, i.e. flowering and leaf growth occur in different time periods. Because after the starch, the second prominent storage compound of corm is represented by proteins, we were interested in nitrogen remobilisation during the annual life cycle of C. autumnale. In this context the content of soluble and insoluble proteins were measured in parallel with determination of some exo-and endopeptidase activities. Our results indicate that the continual proteolysis occurs in both mother and new daughter corms during the whole life-cycle of the plant. L-Ala-aminopeptidase and trypsin-like endopeptidase were the most active peptidases in both mother and daughter corms. As the protein level of mother corm did not change significantly during the development of the future above-ground part under the soil surface (the first, autumnal developmental stage), the developmental profile of nitrate reductase activity was estimated followed by evaluation of total nitrogen and amino acid contents. Significant activity of root nitrate reductase was detected in the roots only in the second, vernal stage. Our results showed that the stored proteins constituted a relevant nitrogen source partly required by the growth processes of the late autumnal stage, but mainly by the intensive growth of leaves and reproductive structures during the second, photosynthetically active stage of the life-cycle.  相似文献   
256.
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.The extension of fatty acids to lengths greater than 28 carbons (C28) is an exceptional process in plant metabolism in that it requires unique biochemical machinery, and the elongation products are used for the synthesis of specialized plant metabolites. Derivatives of C30 to C34 fatty acids make up the bulk of plant cuticular wax, which coats all of a plant’s primary aerial surfaces. Cuticular wax serves as a barrier against transpirational water loss (Riederer and Schreiber, 2001) and protects the plant from both biotic (Eigenbrode, 1996) and abiotic (Grace and van Gardingen, 1996) stresses. C30 to C34 fatty acid-derived lipids are also components of the pollen coat, where they function in pollen hydration and germination on dry stigma (Elleman et al., 1992; Preuss et al., 1993).The core complex that elongates long-chain fatty acids (C16–C18) to very-long-chain fatty acids (VLCFAs; C20–C34) consists of four interacting proteins localized to the endoplasmic reticulum (ER). β-Keto-acyl-CoA synthases (KCSs), also known as condensing enzymes, catalyze the first reaction required for VLCFA elongation, condensing malonyl-CoA with an acyl-CoA (n) to produce a β-keto-acyl-CoA (n + 2). Condensation is both a specific and rate-limiting step in elongation (Millar and Kunst, 1997). Chain length specificity of KCSs is of particular importance because VLCFA length determines the downstream use of the fatty acid (for review, see Joubès et al., 2008; Haslam and Kunst, 2013a). There are two families of condensing enzymes in Arabidopsis (Arabidopsis thaliana). The ELONGATION-DEFECTIVE (ELO)-LIKE family is homologous to yeast (Saccharomyces cerevisiae) ELOs, and has putative functions in sphingolipid biosynthesis (Quist et al., 2009). Although our current understanding of plant ELO-LIKE physiological function and biochemical activity is limited, the mechanism of yeast Elo protein activity has been thoroughly investigated (Denic and Weissman, 2007). The FATTY ACID ELONGATION1 (FAE1)-type family is homologous to the first condensing enzyme identified in Arabidopsis, which is required for the synthesis of C20 to C22 VLCFAs in Arabidopsis oilseeds. Many of the 21 FAE1-type condensing enzymes of Arabidopsis have been characterized using reverse genetics and heterologous expression in yeast (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006; Tresch et al., 2012). This work has revealed the intriguing caveat that, although FAE1-type KCSs are involved in the synthesis of diverse downstream metabolites and use a broad range of acyl chain lengths, none are able to efficiently elongate VLCFAs beyond C28 (for review, see Haslam and Kunst, 2013a), which is essential for the production of cuticular wax components.Eceriferum2 (cer2) and glossy2 (gl2) mutants of Arabidopsis and Zea mays, respectively, are deficient in specific VLCFA-derived waxes longer than C28 (Bianchi et al., 1975; McNevin et al., 1993; Jenks et al., 1995). Both mutations were mapped to genes that do not resemble any component of the elongase complex (Tacke et al., 1995; Xia et al., 1996), but are homologous to the BAHD family of acyltransferases (St-Pierre et al., 1998). However, site-directed mutagenesis of conserved acyltransferase catalytic site amino acids in CER2 revealed that this motif is not required for CER2 function in cuticular wax synthesis (Haslam et al., 2012).CER6 is a condensing enzyme necessary for the accumulation of stem cuticular waxes in Arabidopsis, but when expressed in yeast, CER6 can only elongate VLCFAs to C28. When CER2 is expressed in yeast, it has no elongation activity. However, coexpression of CER2 and CER6 results in efficient production of C30 VLCFAs. Coexpression of CER2 with LfKCS45, a condensing enzyme from the crucifer Lesquerella fendleri that generates C28 and a small amount of C30 VLCFAs (Moon et al., 2004), does not alter product chain length (Haslam et al., 2012). Based on these observations, it was hypothesized that CER2 modifies the chain length specificity of the core elongase complex by interaction with specific KCS enzymes (Haslam et al., 2012).CER2 homologs are found in diverse flowering plant lineages, and many species have multiple CER2 homologs (Tuominen et al., 2011). A BLAST search of proteins from Arabidopsis identified two sequences with substantial similarity to CER2. NP_193120 is 36% identical to CER2, and is encoded by the gene At4g13840. We named this gene CER2-LIKE1 (also known as CER26) (Pascal et al., 2013). NP_566741 is 38% identical to CER2, and is encoded by the gene At3g23840. We named this gene CER2-LIKE2 (also named CER26-LIKE) (Pascal et al., 2013). Characterization of a cer2-like1 null mutant revealed a role for the CER2-LIKE1 protein in the elongation of leaf wax precursors beyond C30, analogous to the role of CER2 in C28 elongation in stems (Haslam et al., 2012; Pascal et al., 2013). cer2 cer2-like1 double mutants are deficient in the formation of wax components longer than C28 in both stems and leaves. As the cer2 single mutant has no leaf wax phenotype, the additive effect of these two mutations on leaf wax composition indicates that there is partial functional redundancy between the two genes.A comprehensive investigation of the biochemical and physiological functions of CER2-LIKE proteins is necessary. Beyond the value of knowing the specific roles of each homolog, such an investigation has potential to elucidate the nature of CER2-LIKE protein function. With this objective, we used our data to address the following questions: (1) Do CER2-LIKE proteins function with CER6 alone, or can they modify the activity of other FAE1-type condensing enzymes? (2) Do CER2-LIKE proteins have different effects on the substrate specificity of the same condensing enzyme, or is substrate specificity determined exclusively by the condensing enzyme? (3) What is the physiological relevance of the subtle changes in acyl lipid chain length that CER2-LIKE proteins induce?  相似文献   
257.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   
258.
This research focused on how adult female brown‐headed cowbirds, Molothrus ater, regulate social feedback on a group level to shape the development of male song. Specifically, females produce rapid wing movements in response to male song, termed ‘wing strokes,’ which have been shown to shape male song and predict song quality. These effects have been documented in captive dyads and triads, but not in more naturalistic flocks, where song development actually occurs. Here, we studied wing stroking in small seminatural flocks of differing female‐to‐male ratios. Despite differences in the number of females and their social selectivity, the same pattern of female feedback emerged in seven of eight flocks: One female produced the majority of wing strokes to male song, making her the primary wing stroker in her flock. Previous studies on large flocks have demonstrated females to facilitate male song improvisation and development if they exhibited higher social selectivity by approaching immature males less. Here, we found that primary wing strokers were indeed more socially selective than non‐primary wing strokers. This research is the first to document social stimulation being facilitated at the group level to ensure that more highly selective females deliver the most feedback.  相似文献   
259.
The ability of the lignin-degrading microorganism Phanerochaete chrysosporium to attack polyethylene and polypropylene was investigated using a series of polymer blends containing 10, 20 and 30% lignin obtained from the waste product of pulp and paper industry. In the cultivation medium, lignin peroxidase and Mn(II)peroxidase activities were detected. Degradation was verified by quantitative u.v. spectrophotometric analysis of the cultivation medium and by liberation of CO2 from the blends. Measurement of the tensile strength after 30-days cultivation showed that the mechanical properties of the polymer blends were decreased during the biodegradation process. The isolation of oligomer fractions by tetrahydrofuran (THF) extraction of biodegraded polymers and their characterization by gel permeation chromatography (GPC), u.v. and Fourier transmission infrared (FTIR) spectroscopy indicates that biotransformation of the lignin component during the cultivation process initiates partial biodegradation of the synthetic polymer matrix.  相似文献   
260.
Cell-mediated lymphocytotoxicity was generated in four strain combinations differing only by the cell-surface expression of the class II E molecule controlled by the H-2 complex. The four combinations were: B10.D2(R107) anti-B10.A(3R), B10.A(4R) anti-B10.A(2R), B10.GD anti-B10.D2(R101), and B10.S(7R) anti-B10.S(9R). In all four of these combinations, the stimulator expresses E molecules on the cell surface, while the responder does not. The cytolytic T lymphocytes generated in the B10.D2(R107) anti-B10.A(3R) and B10.A(4R) anti-B10.A(2R) combinations reacted not only with the stimulator but also with strains that do not express cell-surface E molecules, in particular, strains carrying the H-2 f and H-2 q haplotypes. The cross-reactivity with E-negative strains could be blocked by monoclonal antibodies specific for the Af or Aq molecules but not by antibodies recognizing determinants on E or class I (K) molecules. The anti-H-2f cross-reactivity could be inhibited by H-2 q cold targets and, reciprocally, the anti-H-2q reactivity could be blocked by H-2 f cold targets. These findings are interpreted as indicating that the cytolytic T lymphocytes stimulated by E molecules can recognize and lyse cells lacking E molecules but expressing A molecules. The observed E-A cross-reactivity supports the notion of structural and functional relatedness between the A and E molecules and suggests a common evolutionary origin of the A- and E-encoding loci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号