首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   8篇
  国内免费   1篇
  2022年   2篇
  2019年   1篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2007年   8篇
  2006年   1篇
  2005年   6篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1974年   1篇
  1936年   1篇
  1934年   1篇
  1930年   2篇
  1929年   1篇
排序方式: 共有80条查询结果,搜索用时 140 毫秒
71.
G2 arrest of cells suffering DNA damage in S phase is crucial to avoid their entry into mitosis, with the concomitant risks of oncogenic transformation. According to the current model, signals elicited by DNA damage prevent mitosis by inhibiting both activation and nuclear import of cyclin B1-Cdk1, a master mitotic regulator. We now show that normal human fibroblasts use additional mechanisms to block activation of cyclin B1-Cdk1. In these cells, exposure to nonrepairable DNA damage leads to nuclear accumulation of inactive cyclin B1-Cdk1 complexes. This nuclear retention, which strictly depends on association with endogenous p21, prevents activation of cyclin B1-Cdk1 by Cdc25 and Cdk-activating kinase as well as its recruitment to the centrosome. In p21-deficient normal human fibroblasts and immortal cell lines, cyclin B1 fails to accumulate in the nucleus and could be readily detected at the centrosome in response to DNA damage. Therefore, in normal cells, p21 exerts a dual role in mediating DNA damage-induced cell cycle arrest and exit before mitosis. In addition to blocking pRb phosphorylation, p21 directly prevents mitosis by inactivating and maintaining the inactive state of mitotic cyclin-Cdk complexes. This, with subsequent degradation of mitotic cyclins, further contributes to the establishment of a permanent G2 arrest.  相似文献   
72.
Integrin linked kinase (ILK) is ubiquitously expressed serine/threonine protein kinase, a binding partner of β1 and β3 integrin subunit as a cytoplasmic effector of integrin receptors that functionally links them to the actin cytoskeleton.We postulate that ILK is important enzyme involved in epithelial-mesenchymal transition (EMT) a critical event in the process of cancer progression. Commonly used EMT molecular markers include among others increased expression of N-cadherin and vimentin, nuclear localization of β-catenin, and the decrease of E-cadherin synthesis. In this study we were able to show that N-cadherin expression in melanoma cells is dependent on ILK signaling and the translocation of β-catenin to the nucleus. Silencing of ILK expression by siRNA significantly inhibited the stabilization and subsequent nuclear translocation of β-catenin and the expression of N-cadherin, a crucial molecule in the EMT, which facilitates association with fibroblast and endothelial cells during invasion of various cancers. The results allow to cautiously speculate on the important role of ILK in the cross-talk between integrins and cadherins accompanying EMT in melanoma.  相似文献   
73.
74.
Human diploid fibroblasts have a finite proliferative lifespan in culture, at the end of which they are ararrested with G1 phase DNA contents. Upon serum stimulation, senescent cells are deficient in carrying out a subset of early signal transduction events such as activation of protein kinase C and induction of c-fos. Later in G1, they uniformly fail to express late G1 genes whose products are required for DNA synthesis, implying that they are unable to pass the R point. Failure to pass the R point may occur because senescent cells are unable to phosphorylate the retinoblastoma protein, owing to the accumulation of inactive complexes of cyclin E/Cdk2 and possibly cyclin D/Cdk4. Senescent cells contain high amounts of p21, a potent cyclin-dependent kinase inhibitor whose levels are also elevated in cells arrested in G1 following DNA damage, suggesting that both arrests might share a common mechanism. Cell aging is accompanied by a progressive shortening of chromosomal telomeres, which could be perceived by the cells as a form of DNA damage that gives rise to the signals that inactivate the cell cycle machinery.  相似文献   
75.
76.
Prostate cancer is one of the most common malignancies in men and is predicted to be the second leading cause of cancer-related deaths. After 6–18 months, hormone ablation treatment results in androgen-independent growth of cancer cells, metastasis and progression. The mechanism of androgen-independent growth of prostatic carcinoma cells is still unknown. Identification of factors that facilitate the transition from androgen-dependent to independent states is crucial in designing future diagnostics and medication strategies. To understand the biochemical meaning of hormone dependency deprivation, glycoproteins enriched profiles were compared between DU145 (hormone non-responding) and LNCaP (hormone responding) prostate cancer cells. These results allow for anticipation on the important role of glycosylation in malignant transformation. Both Tn antigen and complex antennary N-oligosaccharides were recognized. Their occurrence might be involved in the development and progression of tumor, and failure of hormone ablation therapy. Among identified proteins in androgen-sensitive cells nucleolin (P19338) was found that is widely described as apoptosis inhibitor, and also transporter of molecules from the membrane to the cytoplasm or nucleus. In addition, 14-3-3 protein family (P27348, P31946, P61981, P63104, P62258, Q04917, and P31947) was investigated across available databases as it forms stable complexes with glycoproteins. Our studies indicate that isoforms: sigma and eta were found in androgen-dependent prostate cancer cells, while other isoforms were present in androgen non-responding cells. 14-3-3 binding partners are involved in cancer pathogenesis. These findings may contribute to a better understanding of prostate cancer tumorigenesis and to a more efficient prognosis and individual therapy in a future. However, it still remains to be revealed how important those changes are for androgen dependency loss in prostate cancer patients carried out on clinically relevant populations.  相似文献   
77.
One of an essential characteristic of human skin are time dependent mechanical properties. Here, we demonstrate that stiffness of human dermal fibroblast correlates with age and it can be restored after anti-wrinkle tripeptide treatment. The stiffness of human fibroblasts isolated from donors of 30-, 40- and 60 years old were examined. Additionally the effect of anti- wrinkle tripeptide of latter cells was investigated. The atomic force microscopy measurements were performed on untreated fibroblast as well as on treated with the peptide. The Young’s modulus for two indentation depths 200 and 600 nm of each cell type was determined. The Young’s modulus increases with age of the cells. The highest values of Young’s modulus were obtained for fibroblasts collected from 60 years old donors, for indentation depth of ~200 nm. For larger indentation depth of 600 nm there are no significant differences in stiffness between cells. Fibroblasts treated with the anti-wrinkle tripeptide exhibit lower Young’s modulus. The cells derived from 40- and 60-years old donors restored stiffness characteristic to the level of 30 years old subjects. The results show correlation between stiffness and age of the human fibroblast as well as impact of anti-wrinkle tripeptide on the mechanical properties of skin cells.  相似文献   
78.
79.
Human prostatic acid phosphatase (PAP) (EC 3.1.3.2) was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.  相似文献   
80.
After demonstration that cysteamine induced duodenal lesions in gastrectomized rats, while a number of antiulcer drugs mitigated these lesions, it was shown that one single intrarectal (i.r.) cysteamine application produced severe colon lesions in acute studies in rats. Thus, the further focus was on the protracted effect of cysteamine challenge (400 mg/kg b.w. i.r.) and therapy influence in chronic experiments in female rats. Regularly, cysteamine colon lesions were markedly mitigated by ranitidine (10), omeprazole (10), atropine (10), methylprednisolone (1), sulphasalazine (50; mg/kg), pentadecapeptide BPC 157 (PL-10, PLD-116; 10 microg or 10 ng/kg). Specifically, after 1 or 3 months following initial challenge (cysteamine 400 mg/kg i.r.) in female rat, the therapy [BPC 157 (PL-10, PLD-116 (10.0 microg or 10.0 ng/kg; i.g., i.p., i.r.), ranitidine, omeprazole, atropine, methylprednisolone, sulphasalazine (i.p.)] reversed the protracted cysteamine colon injury: the 1 week-regimen (once daily application) started after 1 month post-cysteamine, as well as the 2 weeks-regimen (once daily application), which started after 3 months. The effect on recidive lesion was also tested. These cysteamine lesions may reappear after stopping therapy (after stopping therapy for 3 weeks at the end of 2-weeks regimen started in 3 months-cysteamine female rats) in sulphasalazine group, while this reappearance is markedly antagonized in pentadecapeptide BPC 157 (PL-10, PLD-116)-rats (cysteamine-colon lesion still substantially low).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号