首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   30篇
  2023年   4篇
  2022年   5篇
  2021年   14篇
  2020年   4篇
  2019年   6篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   29篇
  2014年   13篇
  2013年   32篇
  2012年   28篇
  2011年   28篇
  2010年   21篇
  2009年   13篇
  2008年   25篇
  2007年   14篇
  2006年   19篇
  2005年   17篇
  2004年   13篇
  2003年   18篇
  2002年   8篇
  2001年   10篇
  1998年   6篇
  1997年   4篇
  1995年   4篇
  1992年   11篇
  1991年   3篇
  1990年   4篇
  1989年   5篇
  1985年   6篇
  1984年   5篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1953年   2篇
  1951年   2篇
  1935年   3篇
  1930年   2篇
  1918年   3篇
  1916年   2篇
  1915年   3篇
  1913年   4篇
  1912年   4篇
  1911年   2篇
  1910年   2篇
  1909年   2篇
  1897年   8篇
  1888年   3篇
排序方式: 共有488条查询结果,搜索用时 17 毫秒
51.
Koh CH  Cheung NS 《Cellular signalling》2006,18(11):1844-1853
Neuronal cell death can occur by means of either necrosis or apoptosis. Both necrosis and apoptosis are generally believed to be distinct mechanisms of cell death with different characteristic features distinguished on the basis of their morphological and biochemical properties. The brain is the most cholesterol-rich organ in the body but not much is known about the mechanisms that regulate cholesterol homeostasis in the brain. Recently, several clinical and biochemical studies suggest that cholesterol imbalance in the brain may be a risk factor related to the development of neurological disorders such as Niemann-Pick disease type C (NPC) and Alzheimer's disease (AD). NPC is a fatal juvenile neurodegenerative disorder characterized by premature neuronal death and somatically altered cholesterol metabolism. The main biochemical manifestation in NPC is elevated intracellular accumulation of free cholesterol caused by a genetic deficit in cholesterol trafficking. The pharmacological agent, U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), is a well-known class-2 amphiphile which inhibits cholesterol transport. Cells treated with this agent accumulate intracellular cholesterol to massive levels, similar to that observed in cells from NPC patients. NPC and AD have some pathological similarities which may share a common underlying cause. AD is one of the most common types of dementia affecting the elderly. However, the molecular mechanisms of neurodegeneration in NPC and AD are largely unknown. This review provides a consolidation of work done using U18666A in the past half century and focuses on the implications of our research findings on the mechanism of U18666A-mediated neuronal apoptosis in primary cortical neurons, which may provide an insight to elucidate the mechanisms of neurodegenerative diseases, particularly NPC and AD, where apoptosis might occur through a similar mechanism.  相似文献   
52.
Cytotoxic T lymphocyte (CTL)-induced death triggered by the granule exocytosis pathway involves the perforin-dependent delivery of granzymes to the target cell. Gene targeting has shown that perforin is essential for this process; however, CTL deficient in the key granzymes A and B maintain the ability to kill their targets by granule exocytosis. It is not clear how granzyme AB(-/-) CTLs kill their targets, although it has been proposed that this occurs through perforin-induced lysis. We found that purified granzyme B or CTLs from wild-type mice induced classic apoptotic cell death. Perforin-induced lysis was far more rapid and involved the formation of large plasma membrane protrusions. Cell death induced by granzyme AB(-/-) CTLs shared similar kinetics and morphological characteristics to apoptosis but followed a distinct series of molecular events. Therefore, CTLs from granzyme AB(-/-) mice induce target cell death by a unique mechanism that is distinct from both perforin lysis and apoptosis.  相似文献   
53.
Chromatin assembly factor CAF-1 facilitates the formation of nucleosomes on newly replicated DNA in vitro. However, the role of CAF-1 in development is poorly understood because mutants are not available in most multicellular model organisms. Biochemical evidence suggests that FASCIATA1, FASCIATA2 and MSI1 form CAF-1 in Arabidopsis thaliana. Because fasciata mutants are viable, CAF-1 is not essential for cell division in plants. Arabidopsis CAF-1 mutants have defects in shoot apical meristems; in addition, CAF-1 is required to establish seedling architecture, leaf size and trichome differentiation. CAF-1 is needed to restrict branching of trichomes on rosette leaves. Increased trichome branching in CAF-1 mutants is not strictly correlated with increased nuclear DNA content. In addition, fas2 glabra3 double mutants show an additive genetic interaction, demonstrating that CAF-1 acts genetically parallel to the GLABRA3-containing, endoreduplication-coupled trichome branching pathway. However, CAF-1 is often needed to restrict endoreduplication, because seedlings of most CAF-1 mutants have increased ploidy. Notably, in the Landsberg erecta background, loss of CAF-1 does not affect ploidy, demonstrating that loss of CAF-1 can be compensated in some Arabidopsis accessions. These results reveal that the functions of FAS1, FAS2 and MSI1 are not restricted to meristems, but are also needed to control genome replication at multiple steps of development.  相似文献   
54.
The NF-kappaB p50 is the N-terminal processed product of the precursor, p105. It has been suggested that p50 is generated not from full-length p105 but cotranslationally from incompletely synthesized molecules by the proteasome. We show that the 20S proteasome endoproteolytically cleaves the fully synthesized p105 and selectively degrades the C-terminus of p105, leading to p50 generation in a ubiquitin-independent manner. As small as 25 residues C-terminus to the site of processing are sufficient to promote processing in vivo. However, any p105 mutant that lacks complete ankyrin repeat domain (ARD) is processed aberrantly, suggesting that native processing must occur from a precursor, which extends beyond the ARD. Remarkably, the mutant p105 that lacks the internal region including the glycine-rich region (GRR) is completely degraded by 20S proteasome in vitro. This suggests that the GRR impedes the complete degradation of the p105 precursor, thus contributing to p50 generation.  相似文献   
55.
The Na(+),K(+)-ATPase plays key roles in brain function. Recently, missense mutations in the Na(+),K(+)-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead to functionally altered, but active, Na(+),K(+)-pumps, that display reduced apparent affinity for cytoplasmic Na(+), but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E(1) form with Na(+) is defective, and the E(1)-E(2) equilibrium is not displaced. In Thr618Met, the Na(+) affinity is reduced because of displacement of the conformational equilibrium in favor of the K(+)-occluded E(2)(K(2)) form. In both mutants, K(+) interaction at the external activating sites of the E(2)P phosphoenzyme is normal. The change of cellular Na(+) homeostasis is likely a major factor contributing to the development of FRDP in patients carrying the Phe785Leu or Thr618Met mutation. Phe785Leu moreover interferes with Na(+) interaction on the extracellular side and reduces the affinity for ouabain significantly. Analysis of two additional Phe(785) mutants, Phe785Leu/Leu786Phe and Phe785Tyr, demonstrated that the aromatic function of the side chain, as well as its exact position, is critical for Na(+) and ouabain binding. The effects of substituting Phe(785) could be explained by structural modeling, demonstrating that Phe(785) participates in a hydrophobic network between three transmembrane segments. Thr(618) is located in the cytoplasmic part of the molecule near the catalytic site, and the structural modeling indicates that the Thr618Met mutation interferes with the bonding pattern in the catalytic site in the E(1) form, thereby destabilizing E(1) relative to E(2)(K(2)).  相似文献   
56.
The emergence of new pandemic influenza A viruses requires overcoming barriers to cross-species transmission as viruses move from animal reservoirs into humans. This complicated process is driven by both individual gene mutations and genome reassortments. The viral polymerase complex, composed of the proteins PB1, PB2, and PA, is a major factor controlling host adaptation, and reassortment events involving polymerase gene segments occurred with past pandemic viruses. Here we investigate the ability of polymerase reassortment to restore the activity of an avian influenza virus polymerase that is normally impaired in human cells. Our data show that the substitution of human-origin PA subunits into an avian influenza virus polymerase alleviates restriction in human cells and increases polymerase activity in vitro. Reassortants with 2009 pandemic H1N1 PA proteins were the most active. Mutational analyses demonstrated that the majority of the enhancing activity in human PA results from a threonine-to-serine change at residue 552. Reassortant viruses with avian polymerases and human PA subunits, or simply the T552S mutation, displayed faster replication kinetics in culture and increased pathogenicity in mice compared to those containing a wholly avian polymerase complex. Thus, the acquisition of a human PA subunit, or the signature T552S mutation, is a potential mechanism to overcome the species-specific restriction of avian polymerases and increase virus replication. Our data suggest that the human, avian, swine, and 2009 H1N1-like viruses that are currently cocirculating in pig populations set the stage for PA reassortments with the potential to generate novel viruses that could possess expanded tropism and enhanced pathogenicity.  相似文献   
57.
Tumor cell invasion is vital for cancer progression and metastasis. Adhesion, migration, and degradation of the extracellular matrix are important events involved in the establishment of cancer cells at a new site, and therefore molecular targets are sought to inhibit such processes. The effect of a plant proteinase inhibitor, Enterolobium contortisiliquum trypsin inhibitor (EcTI), on the adhesion, migration, and invasion of gastric cancer cells was the focus of this study. EcTI showed no effect on the proliferation of gastric cancer cells or fibroblasts but inhibited the adhesion, migration, and cell invasion of gastric cancer cells; however, EcTI had no effect upon the adhesion of fibroblasts. EcTI was shown to decrease the expression and disrupt the cellular organization of molecules involved in the formation and maturation of invadopodia, such as integrin β1, cortactin, neuronal Wiskott-Aldrich syndrome protein, membrane type 1 metalloprotease, and metalloproteinase-2. Moreover, gastric cancer cells treated with EcTI presented a significant decrease in intracellular phosphorylated Src and focal adhesion kinase, integrin-dependent cell signaling components. Together, these results indicate that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathways.  相似文献   
58.
59.
Thiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl- l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl- l-homocysteine and as a ternary complex with S-adenosyl- l-homocysteine and the substrate 6-mercaptopurine, to 1.8 and 2.0 A resolution, respectively. Comparison of the structures reveals that an active site loop becomes ordered upon 6-mercaptopurine binding. The positions of the two ligands are consistent with the expected S N2 reaction mechanism. Arg147 and Arg221, the only polar amino acids near 6-mercaptopurine, are highlighted as possible participants in substrate deprotonation. To probe whether these residues are important for catalysis, point mutants were prepared in the human enzyme. Substitution of Arg152 (Arg147 in murine TPMT) with glutamic acid decreases V max and increases K m for 6-mercaptopurine but not K m for S-adenosyl- l-methionine. Substitution at this position with alanine or histidine and similar substitutions of Arg226 (Arg221 in murine TPMT) result in no effect on enzyme activity. The double mutant Arg152Ala/Arg226Ala exhibits a decreased V max and increased K m for 6-mercaptopurine. These observations suggest that either Arg152 or Arg226 may participate in some fashion in the TPMT reaction, with one residue compensating when the other is altered, and that Arg152 may interact with substrate more directly than Arg226, consistent with observations in the murine TPMT crystal structure.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号