首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   50篇
  2024年   1篇
  2023年   6篇
  2022年   21篇
  2021年   30篇
  2020年   11篇
  2019年   16篇
  2018年   22篇
  2017年   22篇
  2016年   31篇
  2015年   42篇
  2014年   52篇
  2013年   59篇
  2012年   91篇
  2011年   71篇
  2010年   46篇
  2009年   39篇
  2008年   52篇
  2007年   47篇
  2006年   42篇
  2005年   53篇
  2004年   44篇
  2003年   31篇
  2002年   29篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   10篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有911条查询结果,搜索用时 328 毫秒
151.
In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing these sensory stimuli into perceptual objects is a fundamental task faced by all sensory systems. Similar to other sensory modalities, increased odor backgrounds decrease the detectability of target odors by the olfactory system. The mechanisms by which background odors interfere with the detection and identification of target odors are unknown. Here we utilized the framework of the Drift Diffusion Model (DDM) to consider possible interference mechanisms in an odor detection task. We first considered pure effects of background odors on either signal or noise in the decision-making dynamics and showed that these produce different predictions about decision accuracy and speed. To test these predictions, we trained mice to detect target odors that are embedded in random background mixtures in a two-alternative choice task. In this task, the inter-trial interval was independent of behavioral reaction times to avoid motivating rapid responses. We found that increased backgrounds reduce mouse performance but paradoxically also decrease reaction times, suggesting that noise in the decision making process is increased by backgrounds. We further assessed the contributions of background effects on both noise and signal by fitting the DDM to the behavioral data. The models showed that background odors affect both the signal and the noise, but that the paradoxical relationship between trial difficulty and reaction time is caused by the added noise.  相似文献   
152.
Defensive behavioral patterns in response to human-induced rapid environmental change can affect animals’ fitness and may play a role in species conservation status. To test this hypothesis, we compared the risk assessment and defensive behavioral responses of captive white-lipped peccary (WLP; Tayassu pecari) and collared peccary (CP; Pecari tajacu), which retain different conservation status; WLP are considered vulnerable and CP of least concern. We used an adapted paradigm of the mouse defense test battery (MDTB) comprising four consecutive tests. Two of these tests simulated a novel environment, while the other two stimulated the expression of defensive behavioral patterns. Besides differences in risk assessment and defensive threat/attack behavioral patterns between species, we compared flight initiation distance, flight speed, and plasma glucocorticoid concentrations. When facing a novel environment and risk challenges from humans’ predator-like cues, the white-lipped peccary showed more exploratory and defensive threat/attack behavioral patterns, shorter flight initiation distances, and lower flight speeds, whereas the collared peccaries showed more cautious and retreat patterns, longer flight initiation distances, and higher flight speeds. There were also correlations between physiological and behavioral parameters. We confirmed our hypothesis that the collared peccary’s cautiousness may help to prevent a decrease in its population, while the white-lipped peccary’s exploratory and confrontational behavioral patterns in overhunted areas, together with other simultaneous factors as forest fragmentation, might contribute to placing this species in the vulnerable category.  相似文献   
153.
154.
155.
The neotropical genus Dichroplus and related genera are characterized by a relatively uniform external morphology and a remarkably divergent male genitalia and hence its taxonomy is controversial. It also shows an extreme karyotypic diversification. In this study we used molecular and morphological characters to test the monophyly of the genus and to evaluate chromosome evolution. Twenty‐seven species from Dichroplus and related genera were included in the analysis. Morphological characters refer to the general morphology, male genitalia and female structures. Molecular studies were performed, sequencing part of two mitochondrial genes, cytochrome oxidase I and II. Independent and combined phylogenetic analyses of the data were performed under maximum parsimony. The karyotypic characters (rearrangements) were either mapped onto the combined topology or combined with the other data sets. While the molecular analysis confirms some results attained with morphology, some others do not. All point towards the paraphyly of the genus. Our results show the relevance of morphological data in phylogenetic studies because morphology and molecules supply complementary evidence. The mapping of chromosome characters on the combined tree shows that the most extreme karyotype, in D. silveiraguidoi, is a derived condition, probably reached through several centric fusions, and that X‐autosome centric fusions were recurrently fixed during the evolution of the group. © The Willi Hennig Society 2005.  相似文献   
156.
Survivin is recognized as an attractive target in cancer therapy because of its selective overexpression in the majority of tumors. Upregulated expression of this protein correlates with increased tumor grade, recurrence risk and decreased cancer patients survival. In this study, we assessed the efficacy of two survivin-specific small interfering RNA (siRNA) constructs to inhibit T47D human breast cancer cell growth. After siRNA transfection, T47D cells showed a significant reduction in proliferation and survival exhibiting clear signs of apoptosis. pSil_1 that targeted exon 1 exhibited a stronger inhibitory effect on cell growth, and increased cell apoptosis compared to pSil_30 that targeted exon 4. Cell apoptosis was found to be mediated by translocation of the mitochondrial apoptosis inducing factor (AIF), while no changes were observed in caspase-3 activation and Bid cleavage. Thus, silencing survivin expression using siRNA strategies represents a suitable therapeutic approach to selectively modulate the survival and growth of human breast cancer cells.  相似文献   
157.
The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.  相似文献   
158.
Proteasome modulates mitochondrial function during cellular senescence   总被引:1,自引:0,他引:1  
Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidence that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype, and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence has significant effects on intra- and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production, and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a prooxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo.  相似文献   
159.
Fossil pollen grains with morphological features unique in the subtribe Nassauviinae (tribe Mutisieae, Asteraceae) occur in Miocene marine deposits of eastern Patagonia, southern South America. A new morphogenus and two morphospecies are proposed to assemble fossil pollen grains characterized by having a complex bilayered exine structure with delicate columellae, separated by an internal tectum. Subprolate specimens with Trixis exine type (ectosexine thinner than endosexine, straight internal tectum) are referred to Huanilipollis cabrerae. This species is similar to pollen of recent Holocheilus, Jungia, and Proustia. Suboblate specimens with Oxyphyllum exine type (ectosexine and endosexine equally thick, zigzag internal tectum) are referred to Huanilipollis criscii. This species is similar to pollen of recent Triptilion. The spore/pollen sequences in which Nassauviinae pollen types occur suggest a wide range of vegetation types varying from forest dominated during the Early Miocene (Chenque Formation) to virtually xerophytic ones during the Late Miocene (Puerto Madryn Formation). The subtribe Nassauviinae comprises 25 genera and ca. 320 species of vines, shrubs and low trees endemic to America with a wide range of ecological preferences; the nearest living relatives of the fossil types being mostly confined to humid landscapes. The unusual occurrence of these groups during the arid characterized Late Miocene time could be attributed to the complex interplay of the mountain uplift and global circulation patterns. These forcing factors would have created a mosaic of different habitats with both patches of forest and dry-adapted species developing in relatively small regions. This is the first fossil record of Nassauviinae and confirms that this subtribe of Asteraceae was already differentiated in the Miocene.  相似文献   
160.
The cytoplasmic N-terminal domain of connexins has been implicated in multiple aspects of gap junction function, including connexin trafficking/assembly and channel gating. A synthetic peptide corresponding to the first 23 amino acids of human connexin37 was prepared, and circular dichroism and nuclear magnetic resonance studies showed that this N-terminal peptide was predominantly α-helical between glycine 5 and glutamate 16. The importance of this structure for localization of the protein at appositional membranes and channel function was tested by expression of site-directed mutants of connexin37 in which amino acids leucine 10 and glutamine 15 were replaced with prolines or alanines. Wild type connexin37 and both substitution mutants localized to appositional membranes between transfected HeLa cells. The proline mutant did not allow intercellular transfer of microinjected neurobiotin; the alanine mutant allowed transfer, but less extensively than wild type connexin37. When expressed alone in Xenopus oocytes, wild type connexin37 produced hemichannel currents, but neither of the double substitution mutants produced detectable currents. The proline mutant (but not the alanine mutant) inhibited co-expressed wild type connexin37. Taken together, our data suggest that the α-helical structure of the connexin37 N terminus may be dispensable for protein localization, but it is required for channel and hemichannel function.Gap junction channels allow intercellular passage of ions and small molecules up to 1000 Da. They are oligomeric assemblies of members of a family of related proteins called connexins (CX)2 (reviewed in Ref. 1). Six connexin monomers assemble to form a hemichannel or connexon (Fig. 1, top panel), which, in turn, forms a complete gap junction channel by docking with a hemichannel from an adjacent cell. Based on sequence similarities, connexins have been separated into subfamilies designated by Greek characters (2, 3). The majority of connexins are members of the α- and β-subfamilies. Connexin polypeptides span the plasma membrane four times and have three cytoplasmic regions: the N terminus (NT), a cytoplasmic loop between the second and third transmembrane domains, and the C terminus (Fig. 1, middle panel). Structural studies of gap junctions have revealed that each hemichannel contains a ring of 24 transmembrane spanning helices (4, 5). Most topological models suggest that the NT of α-subfamily connexins contains 23 amino acids (illustrated for connexin37, CX37, in Fig. 1, bottom panel) and that of β-subfamily connexins contains 22 amino acids.Open in a separate windowFIGURE 1.Diagrams depicting the relationships between a gap junction hemichannel (top), the connexin polypeptide (middle), and the amino acid sequence of the CX37 N-terminal domain (bottom). Thick vertical lines represent the boundaries of the plasma membrane; the intracellular and extracellular spaces are indicated. The transmembrane (M1–M4), extracellular (E1 and E2), and cytoplasmic (NT, N terminus; CL, cytoplasmic loop; and CT, C terminus) domains within a connexin are indicated.The importance of the connexin NT has been emphasized by the identification of a number of connexin mutants that cause amino acid substitutions within this region and are linked to diseases including sensorineural deafness (CX26, CX30, and CX31), Charcot-Marie-Tooth disease (CX32), oculodentodigital dysplasia (CX43), and congenital cataracts (CX46 and CX50). Among the disease-linked mutants that have been studied, some show impaired protein trafficking to the cell surface, whereas others traffic properly, but show loss or alterations of channel function (616). Heterologous expression of site-directed mutants and chimeric connexins has demonstrated the influence of NT amino acids upon channel properties, including transjunctional voltage (Vj)-dependent gating, unitary conductance, permeability, and sensitivity to regulation by polyamines (1722). Lagree et al. (23) have provided evidence that the NT influences the compatibility of connexin hetero-oligomerization.The structure of the NT domain of a β-group connexin, Cx26, has been investigated through circular dichroism (CD) and nuclear magnetic resonance (NMR) of a synthetic peptide corresponding to part of the predicted CX26NT (24, 25). Based on their data, Purnick et al. (24) proposed a model for the NT of CX26 with an α-helix extending from position 1 to 10 and a critical bend at positions 11 and 12 that was suggested to act as a “hinge” allowing the first 10 amino acids to swing into the pore and block the channel. Oshima et al. (5) have published structural studies of a “permeability” mutant (M34A) of CX26 (26) showing a density within the pore of the channel that they suggested might represent a bundle of N termini acting as a “plug” to close the channel.We have been studying CX37, an α-group connexin that is expressed in endothelial cells (27), which may be important for development of atherosclerotic disease (28) and that can form large conductance channels and hemichannels (27, 29). We have shown that as much as half the length of the CX37NT can be deleted without affecting formation of gap junction plaques, but a full-length N terminus is required for hemichannel gating and intercellular communication (30). These observations suggested that the CX37NT may have a structure that is required for function. Therefore, the present experiments were designed to determine the structure of the NT of CX37 and the importance of that structure for protein localization and formation of functional channels and hemichannels. Differences between our data and those previously reported in studies of CX26 suggest that the structure of the NT in α-group connexins may differ from that in β-group connexins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号